PRODUCT RELIABILITY REPORT

Product:
MPQ8633A_AH/MPQ8634A/MP8733A/MP8792

Reliability Department
Monolithic Power Systems
79 Great Oaks Boulevard
San Jose, CA 95119
Tel: 408-826-0600
Fax: 408-826-0601
1. Device Information

Product:	MPQ8633A_AH/MPQ8634A/MP8733A/MP8792
Package:	FCQFN3×4-20 and FCQFN3×4-21
Process Technology:	BCD
Report Date:	03/22/2019

2. Summary of Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Condition</th>
<th>Lot# or Date Code</th>
<th>Test Results (S.S./Rej)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, Bias, and Operating Life</td>
<td>JESD22-A108, @+125°C for 1000 hours or equivalent</td>
<td>HP426709
H9281211
HP385305</td>
<td>77/0
77/0
77/0</td>
<td></td>
</tr>
<tr>
<td>ESD: Human Body Model (HBM)</td>
<td>ANSI/ESDA/JEDEC JS-001
(MPQ8633A/MP8733A)</td>
<td>H9H48201
H92813
HF332304
(MPQ8634A)</td>
<td>3/0
3/0
3/0</td>
<td>PGOOD pass 1500V
Other pins>2000V
&>2000V
&>2000V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H9H48201
H92813
HF332304
(MPQ8633AH)</td>
<td>3/0
3/0
3/0</td>
<td>>750V</td>
</tr>
<tr>
<td>ESD: Device Charged Model (CDM)</td>
<td>ANSI/ESDA/JEDEC JS-002
(MPQ8634A)</td>
<td>H9H48201
H92813
HF332304</td>
<td>3/0
3/0
3/0</td>
<td></td>
</tr>
<tr>
<td>Latch-up</td>
<td>EIA/JESD78</td>
<td>H9H48201
H92813
HF332304</td>
<td>6/0
6/0
6/0</td>
<td><+/-100mA & >1.5Vccmax</td>
</tr>
<tr>
<td>Moisture/Reflow Sensitivity</td>
<td>J-STD-020</td>
<td>1517
1518
1613
1715
1725
1747</td>
<td>276/0
276/0
276/0
276/0
276/0
276/0</td>
<td>MSL=1</td>
</tr>
<tr>
<td>High Temperature Storage Life</td>
<td>JESD22-A103, @150°C for 1000 hours</td>
<td>1517
1518
1613
1715
1725
1747</td>
<td>45/0
45/0
45/0
45/0
45/0
45/0</td>
<td>FCQFN3×4-20
FCQFN3×4-20
FCQFN3×4-20
FCQFN3×4-21
FCQFN3×4-21
FCQFN3×4-21</td>
</tr>
<tr>
<td>Test Type</td>
<td>Description</td>
<td>Temperature Zone</td>
<td>Hours</td>
<td>Humidity</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>JESD22-A104, from -65°C to 150°C for 1000 cycles or equivalent</td>
<td>1517</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1518</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1613</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1715</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1725</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1747</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td>Accelerated Moisture Resistance</td>
<td>JESD22-A102, @121°C/100%RH for 168 hours or equivalent</td>
<td>1517</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td>Unbiased Autoclave</td>
<td></td>
<td>1518</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1613</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1715</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1725</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1747</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td>Steady State Temperature Humidity</td>
<td>JESD22-A101, @85°C/85%RH static bias at Vinmax for 1000 hours or equivalent</td>
<td>1518</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td>Bias Life Test</td>
<td></td>
<td>1613</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1703</td>
<td>77/0</td>
<td>FCQFN3×4-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1613</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1715</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1725</td>
<td>77/0</td>
<td>FCQFN3×4-21</td>
</tr>
</tbody>
</table>
3. Failure Rate Calculation

Sample Size: 3870
Rejects: 0
Activation Energy (eV): 0.7
Equivalent Device Hours: 3.02×10^8 Hours
Failure Rate (FIT@60%CL): 3.0 FIT
MTBF (years): 37,660 Years

Revision / Update History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Reason for Change</th>
<th>Date</th>
<th>Rel Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial release</td>
<td>January 2016</td>
<td>Ramon Lei</td>
</tr>
<tr>
<td>2.0</td>
<td>Update</td>
<td>September 2017</td>
<td>Ramon Lei</td>
</tr>
<tr>
<td>3.0</td>
<td>Update</td>
<td>September 2018</td>
<td>Ramon Lei</td>
</tr>
<tr>
<td>4.0</td>
<td>Update</td>
<td>March 2019</td>
<td>Ramon Lei</td>
</tr>
</tbody>
</table>
Appendix: Description of Reliability Test and Failure Rate Calculation

High Temperature Operating Life Test
Purpose: This test is a worst-case life test that checks the integrity of the product. The high temperature testing is for acceleration of any potential failures over time. The calculation for failure rate (FIT) is completed using the Arrhenius equation.

Condition: 125°C @ Vinmax

Pass Criteria: All units must pass the min/max limits of the datasheet.

ESD Test
Purpose: The purpose of the ESD test is to guarantee that the device can withstand electrostatic voltages during handling.

Condition: Human Body Model and Charged Device Model

Pass Criteria: ESD Testing on every pin. The device must be fully functional after testing and pass the min/max limits in the datasheet.

IC Latch-Up Test
Purpose: The purpose of this specification is to establish a method for determining IC latch-up characteristics and to define latch-up failure criteria. Latch-up characteristics are extremely important in determining product reliability and minimizing No Trouble Found (NTF) and Electrical Overstress (EOS) failures due to latch-up.

Condition: Voltage and current injection

Pass Criteria: All pins with the exception of “no connect” pins and timing related pins, shall be latch-up tested. The device must be fully functional after testing and pass the min/max limits in the datasheet.

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
Purpose: The purpose of this standard is to identify the classification level of nonhermetic solid state surface mount devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid damage during assembly solder reflow attachment and/or repair operations.

Condition: Bake + moisture sock + 3X reflow at 260°C

Pass Criteria: All units must pass the min/max limits of the datasheet.

High Temperature Storage Life
Purpose: The test is typically used to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms and time-to-failure distributions of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms).

Condition: Bake at 150°C

Pass Criteria: All units must pass the min/max limits of the datasheet.

Accelerated Moisture Resistance- Unbiased Autoclave
Purpose: To check the performance of the device in humid environments. This test checks the integrity of the passivation, poor metal to plastic seal and contamination level during assembly and material compatibility.

Condition: 121°C/15psi/100% RH (no bias)

Pass Criteria: All units must pass the min/max limits of the datasheet.

Temperature Cycle Test
Purpose: This test is used to evaluate the die attach integrity and bond integrity. This is similar to the Thermal Shock test, but can generate different failure modes due to the longer dwell time and gradual temperature change.

Condition: -65°C to 150°C

Pass Criteria: All units must pass the min/max limits of the datasheet.
Steady State Temperature Humidity Bias Life Test

Purpose:
This is to check the performance of the device in humid environments. This test checks the integrity of the passivation, poor metal to plastic seal and contamination level during assembly and material compatibility.

Condition:
85%RH at 85°C with \(V_{\text{in}} = V_{\text{in max}} \)

Pass Criteria:
All units must pass min/max limits of the datasheet

Highly Accelerated Temperature and Humidity Stress Test

Purpose:
This is an equivalent test to Steady State Temperature Humidity Bias Life test with different (higher) temperature stress condition.

Condition:
85%RH at 130°C with \(V_{\text{in}} = V_{\text{in max}} \)

Pass Criteria:
All units must pass min/max limits of the datasheet

Failure Rate Calculation

The failure rate is gauged by a Failures-In-Time (FIT) based upon accelerated stress data. The unit for FIT is failure per billion device hour.

\[
FIT \text{ Rate} = \frac{\chi^2/2 \times 10^9}{EDH}
\]

Where

- \(\chi^2 \) (Chi-Squared) is the goodness-of-fit test statistic at a specified level of confidence;
- \(EDH \) = Equivalent Device Hours = \(AF \times (\text{Life test sample size}) \times (\text{test duration}) \);
- \(AF \) = Acceleration Factor.

High Temperature Operating Life (HTOL) test is usually done under acceleration of temperature and voltage. The total number of failures from the stress test determines the chi-squared factor.

\[
AF = AF_T \times AF_V
\]

The Temperature Acceleration Factor \(AF_T \):

\[
AF_T = \exp \left(\frac{E_a}{K} \left(\frac{1}{T_{\text{use}}} - \frac{1}{T_{\text{stress}}} \right) \right)
\]

- \(T_{\text{use}} \) = Junction temp under typical operating conditions;
- \(T_{\text{stress}} \) = Junction temp under accelerated test conditions;
- \(E_a \) is Activation energy = 0.7eV;
- \(K \) = Boltzmann’s constant = 8.62 \(\times \) 10\(^{-5} \) eV/K.

The voltage Acceleration Factor \(AF_V \):

\[
AF_V = e^{\beta \times (V_{\text{stress}} - V_{\text{use}})}
\]

- \(V_{\text{use}} \) = Gate voltage under typical operating conditions;
- \(V_{\text{stress}} \) = Gate voltage under accelerated test conditions;
- \(\beta \) = Voltage acceleration factor (in 1/Volts) and specified by technology.

Note: For calculation in the report, \(AF_V = 1 \) for simplicity.

MTBF (Mean Time Between Failure) equals to \(10^9 / \text{FIT} \) (in hours).