MPQ4487
36V, 6A, Step-Down Converter with Programmable Frequency and Spread Spectrum Option, Dual USB Charging Ports Supporting EN, Fault Indication, and Type-C 5V@ 3A DFP Mode for Automotive, AEC-Q100 Qualified

DESCRIPTION
The MPQ4487 integrates a monolithic, step-down, switch-mode converter with two USB current-limit switches and Type-C 5V @ 3A mode configuration channels for each port. The MPQ4487 achieves 6A of output current with excellent load and line regulation over a wide input supply range.

The output of each USB switch is current-limited. Both USB ports support USB Type-C 5V @ 3A DFP mode, eliminating the need for outside user interaction.

Full protection features include hiccup current limiting, output over-voltage protection (OVP), and thermal shutdown.

The MPQ4487 requires a minimal number of readily available, standard, external components and is available in a QFN-26 (5mmx5mm) package.

FEATURES
- Wide 6V to 36V Operating Input Voltage Range
- Selectable Output Voltage
- Line Drop Compensation
- Accurate USB1/USB2 Output Current Limit
- 18mΩ/15mΩ Low R_{DS(ON)} Internal Buck Power MOSFETs
- 18mΩ/18mΩ Low R_{DS(ON)} Internal USB1/USB2 Power MOSFETs
- Frequency Adjustable (250kHz to 2.2MHz) Frequency Spread Spectrum for MPQ4487GU-FD-AEC1
- Forced Continuous Conduction Mode (CCM) Operation
- Load Shedding Versus Temperature
- Hiccup Current Limit for both Buck and USB
- EN Control for USB1 and USB2
- Fault Indication for USB1 and USB2
- Supports USB Type-C 5V @ 3A Mode
- ±8kV HBM ESD Rating for USB1 and USB2
- Available in a QFN-26 (5mmx5mm) Package
- Available in AEC-Q100 Grade 1

Applications
- USB Hubs
- USB Type-C Charging Ports

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. “MPS” and “The Future of Analog IC Technology” are registered trademarks of Monolithic Power Systems, Inc.
TYPICAL APPLICATION

Efficiency vs. Load Current

V_in = 6V
V_in = 12V
V_in = 36V

LOAD CURRENT (A)

EFFICIENCY (%)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQ4487GU-AEC1</td>
<td>QFN-26 (5mmx5mm)</td>
<td>See Below</td>
</tr>
<tr>
<td>MPQ4487GU-FD-AEC1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (e.g. MPQ4487GU-AEC1–Z, MPQ4487GU-FD-AEC1–Z)

DEVICE COMPARISON INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency Spread Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQ4487GU-AEC1</td>
<td>No</td>
</tr>
<tr>
<td>MPQ4487GU-FD-AEC1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TOP MARKING

MPSYYYY
MP4487
LLLLLLL

MPS: MPS prefix
YY: Year code
WW: Week code
MP4487: Part number
LLLLLLL: Lot number

PACKAGE REFERENCE

[Diagram of QFN-26 (5mmx5mm) package]
ABSOLUTE MAXIMUM RATINGS (1)

- Supply voltage (V_{IN}) -0.4V to +40V
- V_{SW} -0.3V (-5V for <10ns) to V_{IN} + 0.3V (43V for <10ns)
- V_{BST} .. V_{SW} + 5.5V
- V_{EN} -0.3V to +10V
- V_{OUT}, V_{USB} -0.3V to +6.5V
- All other pins -0.3V to +5.5V

Continuous power dissipation ($T_A = +25°C$) (3)

- QFN-26 (5mmx5mm) 6.25W

Junction temperature 150°C

Recommended Operating Conditions (4)

- Operation input voltage range 6V to 36V
- Output current 3A for USB1, 3A for USB2
- Operating junction temp. (T_J) -40°C to +125°C

Thermal Resistance θ_{JA} θ_{JC}

- QFN-26 (5mmx5mm)
 - JESD51-7 (5) 44........ 9.... °C/W
 - 50mmx50mm 4-Layer PCB 20........ 2.... °C/W

NOTES:

1) Absolute maximum ratings are rated under room temperature unless otherwise noted. Exceeding these ratings may damage the device.

2) For details on EN's ABS max rating, please refer to the EN Control section on page 13.

3) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. Measured on a 4-layer PCB (50mmx50mm).

4) The device is not guaranteed to function outside of its operating conditions.

5) Measured on JESD51-7, 4-layer PCB.
ELECTRICAL CHARACTERISTICS

$V_{IN} = 12V$, $V_{EN} = 5V$, CC1 to ground with a 5.1kΩ resistor, CC3 to ground with a 5.1kΩ resistor, $T_J = -40^\circ C$ to $+125^\circ C$ (6), typical value is tested at $T_J = +25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current (shutdown)</td>
<td>I_{IN}</td>
<td>$V_{EN} = 0V$</td>
<td>3</td>
<td>10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Supply current (quiescent)</td>
<td>I_{Q1}</td>
<td>No switching</td>
<td>1</td>
<td>2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>I_{Q2}</td>
<td>CC floating, no switching, $T_J = +25^\circ C$</td>
<td>400</td>
<td>550</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>EN rising threshold</td>
<td>$V_{EN Rising}$</td>
<td>-3%</td>
<td>1.235</td>
<td>+3%</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN hysteresis</td>
<td>$V_{EN HYS}$</td>
<td></td>
<td>230</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>EN pull-down resistor</td>
<td>R_{EN}</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>Thermal shutdown (7)</td>
<td>T_{TSD}</td>
<td></td>
<td>165</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal hysteresis (7)</td>
<td>T_{TSD_HYS}</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>VCC regulator</td>
<td>V_{CC}</td>
<td></td>
<td>4.3</td>
<td>4.6</td>
<td>4.9</td>
<td>V</td>
</tr>
<tr>
<td>VCC load regulation</td>
<td>$V_{CC LOG}$</td>
<td>$I_{CC} = 50mA$</td>
<td>1</td>
<td>3</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Step-Down Converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_N under-voltage lockout threshold rising</td>
<td>V_{IN_UVLO}</td>
<td></td>
<td>4.6</td>
<td>5.0</td>
<td>5.4</td>
<td>V</td>
</tr>
<tr>
<td>V_N under-voltage lockout threshold hysteresis</td>
<td>V_{UVLO_HYS}</td>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>HS switch on resistance</td>
<td>R_{DS_HS}</td>
<td></td>
<td>18</td>
<td>40</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>LS switch on resistance</td>
<td>R_{DS_LS}</td>
<td></td>
<td>15</td>
<td>30</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_{OUT}</td>
<td>OUT_SEL = low</td>
<td>-2%</td>
<td>5.10</td>
<td>+2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUT_SEL = float, $T_J = +25^\circ C$</td>
<td>-1%</td>
<td>5.17</td>
<td>+1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUT_SEL = float, $T_J = -40^\circ C$ to $+125^\circ C$</td>
<td>-2%</td>
<td>5.17</td>
<td>+2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUT_SEL = high</td>
<td>-2%</td>
<td>5.30</td>
<td>+2%</td>
<td></td>
</tr>
<tr>
<td>Output over-voltage protection</td>
<td>V_{OVP_R}</td>
<td></td>
<td>5.45</td>
<td>5.85</td>
<td>6.25</td>
<td>V</td>
</tr>
<tr>
<td>Output OVP recovery</td>
<td>V_{OVP_F}</td>
<td></td>
<td>5.3</td>
<td>5.7</td>
<td>6.1</td>
<td>V</td>
</tr>
<tr>
<td>Output to ground resistance</td>
<td>R_{FB}</td>
<td>$EN = 0V$, $T_J = +25^\circ C$</td>
<td>100</td>
<td>160</td>
<td>220</td>
<td>kΩ</td>
</tr>
<tr>
<td>Low-side current limit</td>
<td>I_{LS_LIMIT}</td>
<td></td>
<td>-2</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Switch leakage</td>
<td>SW_{LKG}</td>
<td>$V_{EN} = 0V$, $V_{SW} = 36V$, $T_J = +25^\circ C$</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = 0V$, $V_{SW} = 36V$, $T_J = -40^\circ C$ to $+125^\circ C$</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-side current limit</td>
<td>I_{LIMIT}</td>
<td>$V_{OUT} = 0V$</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>Oscillator frequency</td>
<td>F_{SW1}</td>
<td>Pull R_{FREQ} to GND</td>
<td>185</td>
<td>250</td>
<td>315</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>F_{SW2}</td>
<td>$R_{FREQ} = 66.5k\Omega$</td>
<td>250</td>
<td>350</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F_{SW3}</td>
<td>$R_{FREQ} = 9.53k\Omega$, refer to application note</td>
<td>1800</td>
<td>2200</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F_{SW4}</td>
<td>$R_{FREQ} = float$</td>
<td>360</td>
<td>450</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Frequency spread spectrum span (MPQ4487GU-FD-AEC1)</td>
<td>F_{SS}</td>
<td>$R_{FREQ} = float$, based on 450kHz</td>
<td>PMO</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

$V_{\text{IN}} = 12\, \text{V}$, $V_{\text{EN}} = 5\, \text{V}$, CC1 to ground with a $5.1\, \text{k}\, \Omega$ resistor, CC3 to ground with a $5.1\, \text{k}\, \Omega$ resistor, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$ (6), typical value is tested at $T_J = +25^\circ\text{C}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum duty cycle</td>
<td>D_{MAX}</td>
<td>FREQ = 450kHz</td>
<td>91</td>
<td>95</td>
<td>99</td>
<td>%</td>
</tr>
<tr>
<td>Minimum off time</td>
<td>$T_{\text{OFF_MIN}}$</td>
<td></td>
<td>110</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum on time (7)</td>
<td>$T_{\text{ON_MIN}}$</td>
<td></td>
<td>130</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-start time</td>
<td>T_{SS}</td>
<td>Output from 10% to 90%</td>
<td>1</td>
<td>2</td>
<td>3.4</td>
<td>ms</td>
</tr>
<tr>
<td>USB Switch (USB1 and USB2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under-voltage lockout threshold rising</td>
<td>$V_{\text{USB_UVR}}$</td>
<td></td>
<td>3.7</td>
<td>4</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>Under-voltage lockout threshold hysteresis</td>
<td>$V_{\text{USB_UVHYS}}$</td>
<td></td>
<td>200</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch on resistance</td>
<td>$R_{\text{DS_ON SW}}$</td>
<td>Apply 5V voltage on USB output, float CC</td>
<td>18</td>
<td>35</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Output to ground resistance</td>
<td>$R_{\text{DIS_USB}}$</td>
<td></td>
<td>250</td>
<td>500</td>
<td>750</td>
<td>kΩ</td>
</tr>
<tr>
<td>USB OVP clamp</td>
<td>$V_{\text{USB_OV}}$</td>
<td></td>
<td>5.3</td>
<td>5.6</td>
<td>5.9</td>
<td>V</td>
</tr>
<tr>
<td>Current limit</td>
<td></td>
<td>$V_{\text{OUT drops 10%}, \text{Type-C mode, } T_J = +25^\circ\text{C}}$</td>
<td>-6%</td>
<td>3.55</td>
<td>6%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{OUT drops 10%}, \text{Type-A mode, } T_J = +25^\circ\text{C}}$</td>
<td>2.6</td>
<td>2.75</td>
<td>2.9</td>
<td>A</td>
</tr>
<tr>
<td>Line drop compensation</td>
<td>$V_{\text{DROP COM}}$</td>
<td>At 2.4A load, $V_{\text{OUT}} = 5.17, \text{V}$</td>
<td>40</td>
<td>90</td>
<td>140</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{\text{BUS soft-start time}}$</td>
<td>T_{SS}</td>
<td>Output from 10% to 90%</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>ms</td>
</tr>
<tr>
<td>Hiccup mode on time</td>
<td>$T_{\text{HICP_ON2}}$</td>
<td>OC, $V_{\text{OUT drops 10%}, \text{Type-C mode, } T_J = +25^\circ\text{C}}$</td>
<td>3.5</td>
<td>5</td>
<td>6.5</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OC, $V_{\text{OUT drops 10%}, \text{Type-A mode, } T_J = +25^\circ\text{C}}$</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Hiccup mode off time</td>
<td>$T_{\text{HICP OFF}}$</td>
<td>V_{OUT} connected to GND</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>s</td>
</tr>
<tr>
<td>EN1, EN2 logic high input</td>
<td>$V_{\text{ENSW_H}}$</td>
<td></td>
<td>1.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN1, EN2 logic low input</td>
<td>$V_{\text{ENSW_L}}$</td>
<td></td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT1, FLT2 output low voltage</td>
<td>$V_{\text{FLT_Low}}$</td>
<td>Fault condition, sink 1mA</td>
<td></td>
<td></td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>FLT1, FLT2 leakage</td>
<td>$I_{\text{FLT_LVL}}$</td>
<td>$V_{\text{FAULT}} = 5, \text{V}$</td>
<td>1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT1, FLT2 deglitch time</td>
<td>$T_{\text{FLT DEG}}$</td>
<td>Over-current</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>ms</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12\text{V}, V_{EN} = 5\text{V}, CC1$ to ground with a $5.1\text{k}\Omega$ resistor, $CC3$ to ground with a $5.1\text{k}\Omega$ resistor, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$ (6), typical value is tested at $T_J = +25^\circ\text{C}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC resistor to disable Type-C mode</td>
<td>R_A</td>
<td>$CC1$ and $CC3$ pins. For Type-C mode applications, add a 1nF capacitor on $CC1$ and $CC3$.</td>
<td>70</td>
<td>90</td>
<td></td>
<td>$\text{k}\Omega$</td>
</tr>
<tr>
<td>CC voltage to enable $VCONN$</td>
<td>V_{Ra}</td>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>CC voltage to enable V_{BUS}</td>
<td>V_{Rd}</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>CC detach threshold</td>
<td>V_{OPEN}</td>
<td>2.75</td>
<td>2.45</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>CC voltage falling debounce timer</td>
<td>$T_{CC_debounce}$</td>
<td>V_{BUS} enable deglitch</td>
<td>100</td>
<td>144</td>
<td>200</td>
<td>ms</td>
</tr>
<tr>
<td>CC voltage rising debounce timer</td>
<td>$T_{PD_debounce}$</td>
<td>V_{BUS} disable deglitch</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>ms</td>
</tr>
<tr>
<td>VCONN output power</td>
<td>P_{VCONN}</td>
<td>VCONN comes from the buck output with some series resistance, for applications without SuperSpeed data.</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

NOTES:

6) All min/max parameters are tested at $T_J = 25^\circ\text{C}$. Limits over temperature are guaranteed by design, characterization, and correlation.

7) Guaranteed by design and characterization test.
TYPICAL PERFORMANCE CHARACTERISTICS

$V_{IN} = 12V, V_{OUT} = 5.17V, L = 4.7\mu H, T_A = 25^\circ C$, unless otherwise noted.

Output Ripple

- $V_{IN}=12V, V_{OUT}=5.17V, USB1_{I_OUT}=USB2_{I_OUT}=0A$

- $V_{IN}=12V, V_{OUT}=5.17V, USB1_{I_OUT}=USB2_{I_OUT}=3A$

Power Start-Up

- $V_{IN}=12V, V_{OUT}=5.17V, USB1_{I_OUT}=USB2_{I_OUT}=0A$

Power Shutdown

- $V_{IN}=12V, V_{OUT}=5.17V, USB1_{I_OUT}=USB2_{I_OUT}=3A$

USB Over-Current Protection

- $V_{IN}=12V, V_{OUT}=5.17V$

Load Shedding Entry

- $V_{IN}=12V, V_{OUT}=5.17V$

Load Shedding Recovery

- $V_{IN}=12V, V_{OUT}=5.17V$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

\(V_{IN} = 12\text{V}, \ V_{OUT} = 5.17\text{V}, \ L = 4.7\mu\text{H}, \ T_A = 25^\circ\text{C}, \) unless otherwise noted.

EN1 Start-Up
- \(V_{IN} = 12\text{V}, \ V_{OUT} = 5.17\text{V}, \ USB1_{I_{OUT}} = 3\text{A} \)

EN1 Shutdown
- \(V_{IN} = 12\text{V}, \ V_{OUT} = 5.17\text{V}, \ USB1_{I_{OUT}} = 3\text{A} \)

EN2 Start-Up
- \(V_{IN} = 12\text{V}, \ V_{OUT} = 5.17\text{V}, \ USB2_{I_{OUT}} = 3\text{A} \)

EN2 Shutdown
- \(V_{IN} = 12\text{V}, \ V_{OUT} = 5.17\text{V}, \ USB2_{I_{OUT}} = 3\text{A} \)
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

\(V_{IN} = 12V, \ V_{OUT} = 5.17V, \ L = 4.7\mu H, \ T_A = 25°C, \) unless otherwise noted.

Efficiency vs. Load Current

![Efficiency vs. Load Current Graph]

Line Drop Compensation vs. Load Current

![Line Drop Compensation vs. Load Current Graph]

Thermal Image

Thermal Image

\(V_{IN}=12V, \)

USB1_iOUT=2.4A, USB2_iOUT=3A

4 layer PCB, 50mm x 50mm

![Thermal Image 1]

Thermal Image

\(V_{IN}=12V, \)

USB1_iOUT=3A, USB2_iOUT=3A

4 layer PCB, 50mm x 50mm

![Thermal Image 2]
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>QFN 5x5 Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CC1</td>
<td>Configuration channel. CC1 is used to detect connections and configure the interface across the USB1 Type-C cables and connectors. Once a connection is established, CC1 or CC2 is reassigned to provide power over the VCONN pin of the plug.</td>
<td></td>
</tr>
<tr>
<td>2 USB1</td>
<td>USB1 output.</td>
<td></td>
</tr>
<tr>
<td>3, 15, 25 OUT</td>
<td>Buck output. OUT is the power input for USB1 and USB2.</td>
<td></td>
</tr>
<tr>
<td>4, 14 IN</td>
<td>Supply voltage. IN is the drain of the internal power device and provides power to the entire chip. The MPQ4487 operates from a 6V to 36V input voltage. A capacitor (C_{IN}) prevents large voltage spikes at the input. Place (C_{IN}) as close to the IC as possible.</td>
<td></td>
</tr>
<tr>
<td>5, 13 PGND</td>
<td>Power ground. PGND is the reference ground of the regulated output voltage. PGND requires careful consideration during the PCB layout. Connect PGND with copper traces and vias.</td>
<td></td>
</tr>
<tr>
<td>6 AGND</td>
<td>Analog ground. Connect AGND to PGND.</td>
<td></td>
</tr>
<tr>
<td>7 VCC</td>
<td>Internal 4.6V LDO regulator output. Decouple VCC with a 1µF capacitor.</td>
<td></td>
</tr>
<tr>
<td>8, 9, 26 SW</td>
<td>Switch output. Use a wide PCB trace to make the connection.</td>
<td></td>
</tr>
<tr>
<td>10 BST</td>
<td>Bootstrap. A 0.22µF capacitor is connected between SW and BST to form a floating supply across the high-side switch driver.</td>
<td></td>
</tr>
<tr>
<td>11 OUT_SEL</td>
<td>Buck output voltage set. By setting OUT_SEL to low, float, or high, three different output voltages can be achieved: 5.1V, 5.17V, or 5.3V.</td>
<td></td>
</tr>
<tr>
<td>12 FREQ</td>
<td>Switching frequency program input. For the MPQ4487GU-AEC1, connect a resistor from FREQ to GND to set the switching frequency. Float FREQ or connect FREQ to VCC for the default 450kHz frequency. Connect FREQ to ground for a 250kHz internal frequency. For the MPQ4487GU-FD-AEC1, float FREQ or connect FREQ to VCC to achieve a ±10% frequency spread spectrum based on 450kHz. Connect a resistor from FREQ to GND or pull FREQ to GND to set the switching frequency without a frequency spread spectrum.</td>
<td></td>
</tr>
<tr>
<td>16 USB2</td>
<td>USB2 output.</td>
<td></td>
</tr>
<tr>
<td>17 CC4</td>
<td>Configuration channel. CC4 is used to detect connections and configure the interface across the USB2 Type-C cables and connectors. Once a connection is established, CC3 or CC4 is reassigned to provide power over the VCONN pin of the plug.</td>
<td></td>
</tr>
<tr>
<td>18 CC3</td>
<td>Configuration channel. CC3 is used to detect connections and configure the interface across the USB2 Type-C cables and connectors. Once a connection is established, CC3 or CC4 is reassigned to provide power over the VCONN pin of the plug.</td>
<td></td>
</tr>
<tr>
<td>19 FLT2</td>
<td>USB2 fault indication. FLT2 indicates over-current or over-temperature conditions. FLT2 is an open drain in normal conditions. Pull FLT2 low during fault conditions.</td>
<td></td>
</tr>
<tr>
<td>20 EN2</td>
<td>USB2 on/off control input. By default, EN2 is pulled low by an internal 1MΩ resistor.</td>
<td></td>
</tr>
<tr>
<td>21 EN</td>
<td>On/off control of the entire chip. Pull EN down to ground internally with a 2MΩ resistor.</td>
<td></td>
</tr>
<tr>
<td>22 EN1</td>
<td>USB1 on/off control input. By default, EN1 is pulled low by an internal 1MΩ resistor.</td>
<td></td>
</tr>
<tr>
<td>23 FLT1</td>
<td>USB1 fault indication. FLT1 indicates over-current or over-temperature conditions. FLT1 is an open drain in normal conditions. Pull FLT1 low during fault conditions.</td>
<td></td>
</tr>
<tr>
<td>24 CC2</td>
<td>Configuration channel. CC2 is used to detect connections and configure the interface across the USB1 Type-C cables and connectors. Once a connection is established, CC1 or CC2 is reassigned to provide power over the VCONN pin of the plug.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Functional Block Diagram
OPERATION
BUCK CONVERTER SECTION
The MPQ4487 integrates a monolithic, synchronous, rectified, step-down, switch-mode converter with internal power MOSFETs and two USB current-limit switches with charging port auto-detection. The MPQ4487 offers a compact solution that achieves 6A of continuous output current with excellent load and line regulation over a wide input supply range.

The MPQ4487 operates in a fixed-frequency, peak-current-mode control to regulate the output voltage. The internal clock initiates the pulse-width modulation (PWM) cycle, which turns on the integrated high-side power MOSFET (HS-FET). The HS-FET remains on until its current reaches the value set by the COMP voltage (VCOMP). When the power switch is off, it remains off until the next clock cycle begins. If the duty cycle reaches 95% (450kHz switching frequency) in one PWM period, the current in the power MOSFET does not reach the COMP-set current value, and the power MOSFET turns off.

Error Amplifier (EA)
The error amplifier (EA) compares the internal feedback voltage against the internal reference (REF) and outputs VCOMP. This VCOMP controls the power MOSFET current. The optimized, internal compensation network minimizes the external component count and simplifies the control loop design.

Internal VCC Regulator
The 4.6V internal regulator powers most of the internal circuitries. This regulator takes VIN and operates in the full VIN range. When VIN exceeds 4.6V, the output of the regulator is in full regulation. If VIN is less than 4.6V, the output decreases with VIN. VCC requires an external 1μF ceramic decoupling capacitor.

After the buck output starts up, the internal VCC LDO output is biased by the buck output through a Schottky diode.

Enable (EN) Control
The MPQ4487 has an enable control pin (EN). Pull EN high to enable the IC. Pull EN low or float EN to disable the IC. Once EN is pulled high, the buck output is enabled regardless of the status of EN1, EN2, or CC1 through CC4.

Connect EN through a pull-up resistor to VIN. This requires limiting the amplitude of the EN voltage source below 10V or limiting the EN input current below 500μA if the EN pull-up voltage is larger than 10V.

For example, if connecting EN to VIN = 36V, then RPULLUP ≥ (36V - 10V) / 500μA = 52kΩ.

Setting the Frequency
Connect a resistor from FREQ to ground to set the switching frequency (see Table 1). The value of the frequency can be calculated approximately with Equation (1):

\[
FREQ(\text{kHz}) = \frac{100000}{42.5 \times R_{\text{FREQ}}(\text{k}Ω) + 53.7}
\]

The frequency vs. RFREQ is shown in Figure 3.

Figure 2: Zener Diode between EN and GND

Figure 3: Switching Frequency vs. RFREQ
Table 1: Recommended Resistor Values for Typical Switching Frequency

<table>
<thead>
<tr>
<th>R_{FREQ} (kΩ)</th>
<th>F_S (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>66.5</td>
<td>350</td>
</tr>
<tr>
<td>NS</td>
<td>450</td>
</tr>
<tr>
<td>45.8</td>
<td>500</td>
</tr>
<tr>
<td>22.3</td>
<td>1000</td>
</tr>
<tr>
<td>14.6</td>
<td>1500</td>
</tr>
<tr>
<td>9.53</td>
<td>2200</td>
</tr>
</tbody>
</table>

When running the part at a high switching frequency (i.e.: 2.2MHz), consider the minimum on time, minimum off time, and the maximum output current due to the thermal rise.

Two internal comparators monitor FREQ's logic voltage to enable FREQ to float or short to GND. During power-up, there is another internal source current on FREQ. The frequency is locked at 450kHz when a voltage greater than 2V is sensed on FREQ for longer than 8µs. The frequency is locked at 250kHz when a voltage less than 0.1V is sensed on FREQ for longer than 8µs. Leave FREQ floating or connect FREQ to VCC to achieve the 450kHz default switching frequency. Short FREQ to ground to achieve a 250kHz frequency (see Figure 4).

Figure 4: Switching Frequency Functional Block

Frequency Spread Spectrum

The purpose of the spread spectrum is to minimize the peak emissions at a specific frequency.

The MPQ4487GU-FD-AEC1 uses a 4kHz triangle wave (125µs rising, 125µs falling) to modulate internal oscillator. The frequency span of the spread spectrum operation is ±10% (see Figure 5).

Figure 5: Frequency Spread Spectrum

FREQ must be floated or connected to VCC when using the spread spectrum function. The MPQ4487 can work without the switching frequency spread spectrum when FREQ is connected to an external resistor or shorted to GND.

Pull FREQ to GND to set the fixed switching frequency at 250kHz without the frequency spread spectrum. The frequency is determined by an external resistor when connecting FREQ to GND through a resistor.

Under-Voltage Lockout (UVLO)

Under-voltage lockout (UVLO) protects the chip from operating at an insufficient supply voltage. The UVLO comparator monitors the input voltage. The UVLO rising threshold is 5V, and its falling threshold is 4.3V.

Internal Soft Start (SS)

Soft start (SS) prevents the converter output voltage from overshooting during start-up. When the chip starts up, the internal circuitry generates a SS voltage that ramps up from 0V to 5V. When SS is lower than REF, the error amplifier uses SS as the reference. When SS is higher than REF, the error amplifier uses REF as the reference. The SS time is set to 2ms internally. If the output of the MPQ4487 is pre-biased to a certain voltage during start-up, the IC disables the switching of both the high-side and low-side switches until the voltage on the internal SS capacitor exceeds the internal feedback voltage.

Forced CCM Operation

The MPQ4487 work in forced continuous conduction mode (CCM) continuously. The MPQ4487 operates with a fixed switching frequency regardless of whether it is operating in light load or full load. The advantage of CCM is the controllable frequency, smaller output
ripple, and sufficient bootstrap charge time, but it also has low efficiency at light-load condition. A proper inductance should be selected to avoid triggering the low-side switch’s negative current limit (typically 2A, from SW to GND). If the negative current limit is triggered, the low-side switch turns off, and the high-side switch turns on when internal clock begins.

Buck Over-Current Protection (OCP)

The MPQ4487 has a cycle-by-cycle over-current limit when the inductor peak current exceeds the current-limit threshold, and the FB voltage drops below the under-voltage (UV) threshold. Once UV is triggered, the MPQ4487 enters hiccup mode to restart the part periodically. This protection mode is especially useful when the output is dead-shorted to ground. This reduces the average short-circuit current greatly, alleviates thermal issues, and protects the regulator. The MPQ4487 exits hiccup mode once the over-current condition is removed.

Buck Output Over-Voltage Protection (OVP)

The MPQ4487 has output over-voltage protection (OVP). If the output is higher than 5.85V, the high-side switch stops turning on. The low-side switch turns on to discharge the output voltage until the output decreases to 5.7V, and then the chip resumes normal operation.

Floating Driver and Bootstrap Charging

An external bootstrap capacitor powers the floating power MOSFET driver. This floating driver has its own UVLO protection. The UVLO’s rising threshold is 2.2V with a hysteresis of 150mV. The bootstrap capacitor voltage is regulated internally by V_IN and VCC through D1, D2, M1, C4, L1, and C2 (see Figure 6). The BST capacitor (C4) voltage is charged up quickly by turning on M1 when the low-side switch is turned on. The 2.5μA input to the BST current source can also charge the BST capacitor when the low-side switch does not turn on.

![Figure 6: Internal Bootstrap Charging Circuit](image-url)

USB CURRENT-LIMIT SWITCH SECTION

Current-Limit Switch

The MPQ4487 integrates two USB current-limit switches. The MPQ4487 provides built-in soft-start circuitry that controls the rising slew rate of the output voltage to limit inrush current and voltage surges.

When the load current reaches the current-limit threshold, the USB power MOSFET works in a constant current-limit mode (see Figure 7). If the over-current limit condition lasts longer than 5ms (V_OUT does not drop too low), the corresponding USB channel enters hiccup mode with 5ms of on time and 2s of off time. Another USB switch and the buck output still work normally.
Figure 7: Over-Current Limit

After the soft start finishes, if the USB output voltage is lower than 3.5V and lasts longer than 50µs, the MPQ4487 enters hiccup mode without having to wait 5ms (see Figure 8). This can prevent an abnormal thermal rise during the constant resistor (CR) load over-current case.

Figure 8: Over-Current Limit for CR Load

Fast Response for Short-Circuit Protection (SCP)

If the load current increases rapidly due to a short-circuit event, the current may exceed the current-limit threshold before the control loop is able to respond. If the current reaches the 7A secondary current limit level, a fast turn-off circuit activates to turn off the power MOSFET. This can help limit the peak current through the switch, keeping the buck output voltage from dropping too much and affecting another USB channel. The total short-circuit response time is less than 1µs.

When the fast turn-off function is triggered, the MOSFET turns off for 100µs and restarts with a soft start. During the restart process, if the short still remains, the MPQ4487 regulates the gate voltage to hold the current at a normal current limit level.

Output Line Drop Compensation

The MPQ4487 can compensate for an output-voltage drop, such as high impedance caused by a long trace, to maintain a fairly constant output voltage at the load-side voltage.

The internal comparator compares the current-sense output voltage of the two current-limit switches and uses the larger current-sense output voltage to compensate for the line drop voltage.

The line drop compensation amplitude increases linearly as the load current increases. It also has an upper limitation. The line drop compensation at output currents greater than 2.4A is 90mV.

USB Output Over-Voltage Clamp

To protect the device at the cable terminal, the USB switch output has a fixed over-voltage protection (OVP) threshold. When the input voltage is higher than the OVP threshold, the output voltage is clamped to its OVP threshold value.

USB Output Discharge and Impedance

Each USB switch has a fast discharge path that can discharge the external output capacitor's energy quickly during a power shutdown. This function is active when the CC pins are released or the part is disabled (input voltage is under UVLO or EN off). The discharge path is turned off when the USB output voltage is discharged below 50mV. After the fast discharge path turns off, there is only a high impedance resistor (typically 500kΩ) from USB1 or USB2 to ground.

USB Enable On/Off Control (EN1, EN2)

EN1 and EN2 are the on/off control input pins for USB1 and USB2 respectively. The USB switch is active when EN is pulled high. Float or pull the EN voltage to logic low to shut down the USB switch with an output discharge. EN1 and EN2 are pulled low by an internal 1MΩ resistor to ground. Connect EN1 and EN2 to VCC through a 100kΩ resistor for automatic start-up or to control them by an external on/off signal.

Fault Indication (FLT1, FLT2)

FLT1 and FLT2 are the fault indication pins for USB1 and USB2 respectively. FLT is in an open-drain state during shutdown, start-up, or normal condition. When the USB switch enters hiccup mode, or over-temperature protection (OTP) is triggered, FLT is pulled low. FLT
asserts (logic low) on an individual USB switch during an over-current or over-temperature condition. FLT switches high after the fault condition is removed, and the USB output voltage goes high again.

USB Type-C Mode and VCONN

For USB Type-C solutions, two pins (CC1, CC2) on the connector are used to establish and manage the source-to-sink connection. The general concept for setting up a valid connection between a source and a sink is based on being able to detect terminations residing in the product being attached. To aid in defining the functional behavior of CC, a pull-up (Rp) and pull-down (Rd 5.1kΩ) termination model is used based on a pull-up resistor and pull-down resistor (see Figure 9).

![Figure 9: Current Source/Pull-Down CC Model](image)

Initially, a source exposes independent Rp terminations on its CC1 and CC2 pins, and a sink exposes independent Rd terminations on its CC1 and CC2 pins. The source-to-sink combination of this circuit configuration represents a valid connection. To detect this, the source monitors CC1 and CC2 for a voltage lower than its unterminated voltage. The choice of Rp is a function of the pull-up termination voltage and the source’s detection circuit. This indicates that either a sink, a powered cable, or a sink connected via a powered cable has been attached.

Prior to the application of VCONN, a powered cable exposes Ra (typically 1kΩ) on its VCONN pin. Ra represents the load on VCONN plus any resistive elements to ground. In some cable plugs, this might be a pure resistance, and in others, it may simply be the load.

The source must be able to differentiate between the presence of Rd and Ra to know whether there is a sink attached and where to apply VCONN. The source is not required to source VCONN unless Ra is detected.

Two special termination combinations on the CC pins as seen by a source are defined for directly attached accessory modes: Ra/Ra for audio adapter accessory mode and Rd/Rd for debug accessory mode (see Figure 10 and Table 2).

![Figure 10: CC Functional Block](image)

A port that behaves as a source has the following functional characteristics.

1. The source uses a MOSFET to enable or disable the power delivery across VBUS. Initially, the source is disabled.
2. The source supplies pull-up resistors (Rp) on CC1 and CC2 and monitors both to detect a sink. The presence of an Rd pull-down resistor on either CC1 or CC2 indicates that a sink is being attached. The value of Rp indicates the initial USB Type-C current level supported by the host. The MPQ4487 default Rp is 10kΩ, which represents a 3A current level.
3. The source uses the CC pull-down characteristic to detect and determine which CC pin is intended to supply VCONN (when Ra is discovered).
4. Once a sink is detected, the source enables VBUS and VCONN.
5. The source can adjust the value of Rp dynamically to indicate a change in the available USB Type-C current to a sink. For example, at high temperatures, the MPQ4487 changes Rp to 22kΩ to indicate a 1.5A current ability.
6. The source monitors the continued presence of Rd to detect a sink detach. When a detach event is detected, the source is removed, and VBUS and VCONN return to step 2.
Disabled Type-C Mode (Type-A Mode)
During the MPQ4487 initial start-up, the IC sources 10μA for 20μs on CC1. If the CC1 voltage falls into a 400mV to 1.2V range, USB1 latches in Type-A mode unless the part is re-enabled. Type-C mode is disabled, so CC1's attach and detach logic is disabled, and V_bus is always enabled. The current limit changes to a Type-A spec. The same logic is implemented on CC3 for USB2.

To trigger Type-A mode, the external pull-down resistor should be 70 - 90kΩ. Do not connect extra capacitors on CC1 and CC3.

In normal Type-C mode applications, a 1nF capacitor should be added on CC1 and CC3 to avoid falsely triggering Type-A mode. If two Ra resistors pull down CC1 and CC2, or two Rd resistors pull down CC1 and CC2, there is no action inside the IC (V_bus is not enabled).

Load Shedding vs. Temperature
The MPQ4487 monitors the die temperature and changes its output current capability dynamically.

If the die temperature is higher than 125°C, the USB port's CC pin pull-up resistance (Rp) changes to 22kΩ to indicate that its source capability has changed to 1.5A. Meanwhile, V_bus changes to 4.77V.

If the die temperature recovery is lower than 100°C for 16 seconds, V_bus reverts back to the normal voltage set by OUT_SEL. Meanwhile, the USB Type-C current capability changes back to 3A (Rp = 10kΩ). The current limit threshold remains at 3.55A during this period.

Thermal Shutdown
Thermal shutdown prevents the chip from operating at exceedingly high temperatures. When the silicon die temperature exceeds 165°C, the entire chip shuts down. When the temperature falls below its lower threshold (typically 145°C), the chip is enabled.
Table 2: CC Logic Truth Table

<table>
<thead>
<tr>
<th>EN</th>
<th>EN1</th>
<th>EN2</th>
<th>CC of USB1 (8)</th>
<th>CC of USB2 (8)</th>
<th>Buck</th>
<th>VCONN (USB1)</th>
<th>USB1</th>
<th>VCONN (USB2)</th>
<th>USB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

NOTE: 8) USB1 and USB2 are symmetric to each other.

NOTE: 9) "A" means Type-A mode. CC1 (CC3 for USB2) is requested to be pulled down by a 80.6kΩ resistor to enter this mode.
APPLICATION INFORMATION

Selecting the Inductor

For most applications, use an inductor with a DC current rating at least 25% higher than the maximum load current. Select an inductor with a small DC resistance for optimum efficiency. For most designs, the inductor value can be derived with Equation (2):

\[L_i = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I \times f_{OSC}} \]

Where \(\Delta I \) is the inductor ripple current.

Choose the inductor ripple current to be approximately 30% of the maximum load current. The maximum inductor peak current can be calculated with Equation (3):

\[I_{L(MAX)} = I_{LOAD} + \frac{\Delta I}{2} \]

Selecting the Buck Input Capacitor

The input current to the step-down converter is discontinuous and therefore requires a capacitor to supply AC current while maintaining the DC input voltage. Use low ESR capacitors for optimum performance. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. 100\(\mu \)F electrolytic and 50\(\mu \)F ceramic capacitors are recommended in automotive applications at a 450kHz switching frequency.

Since the input capacitor (C1) absorbs the input switching current, it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated with Equation (4):

\[I_{C1} = I_{LOAD} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \]

The worst-case condition occurs at \(V_{IN} = 2V_{OUT} \), shown in Equation (5):

\[I_{C1} = \frac{I_{LOAD}}{2} \]

For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

Selecting the Buck Output Capacitor

The device requires an output capacitor (C2) to maintain the DC output voltage. Estimate the output voltage ripple with Equation (7):

\[\Delta V_{OUT} = \frac{V_{OUT}}{f_s \times L_1} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(\frac{1}{R_{ESR}} + \frac{1}{8 \times f_s \times C_2}\right) \]

Where \(L_1 \) is the inductor value, and \(R_{ESR} \) is the equivalent series resistance (ESR) value of the output capacitor.

For an electrolytic capacitor, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated with Equation (8):

\[\Delta V_{OUT} = \frac{V_{OUT}}{f_s \times L_1} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR} \]

A 100 - 270\(\mu \)F capacitor with an ESR less than 50m\(\Omega \) (e.g.: polymer or tantalum capacitors) and three 10\(\mu \)F ceramic capacitors are recommended in the application (see Table 3).

Table 3: Recommended External Components

<table>
<thead>
<tr>
<th>Switching Frequency</th>
<th>Inductor</th>
<th>Input Cap</th>
<th>Buck Output Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>250kHz</td>
<td>8(\mu)H</td>
<td>50(\mu)F ceramic cap + 100(\mu)F E-cap</td>
<td>30(\mu)F ceramic cap + 270(\mu)F Polymer cap</td>
</tr>
<tr>
<td>450kHz</td>
<td>4.7(\mu)H</td>
<td>50(\mu)F ceramic cap + 100(\mu)F E-cap</td>
<td>30(\mu)F ceramic cap + 270(\mu)F Polymer cap</td>
</tr>
</tbody>
</table>
ESD Protection for I/O Pins
Higher ESD levels should be considered for all USB I/O pins. The MPQ4487 features high ESD protection up to ±8kV human body model on USB1 and USB2, and ±6kV human body model on CC1 through CC4. The ESD structures can withstand high ESD both in normal operation and when the device is powered off. To further extend CC’s ESD level for covering complicated application environments, additional ESD diodes can be added on CC.

PCB Layout Guidelines
Efficient PCB layout is critical for stable operation and thermal dissipation. For best results, refer to Figure 12 and follow the guidelines below.

1. Use short, direct, and wide traces to connect OUT.
2. Add vias under the IC.
3. Route the OUT trace on both PCB layers.
4. Place the buck output ceramic capacitor C2A and C2B on the left side and C2C on the right side.
5. Add a large copper plane for PGND.
6. Add multiple vias to improve thermal dissipation.
7. Connect AGND to PGND.
8. Place a large copper plane for SW, USB, and USB2.
9. Route the USB1 and USB2 traces on both PCB layers.
10. Add multiple vias.
11. Place two ceramic input decoupling capacitors as close to IN and PGND as possible to improve EMI performance.
12. Place the symmetric C_{IN} capacitors on each side of the IC.
13. Place the BST capacitor close to BST and SW.
14. Place the VCC decoupling capacitor as close to VCC as possible.

NOTE:
10) The recommended layout is based on the Typical Application Circuits in Figure 13 to Figure 15.
Figure 12: Recommended Layout
TYPICAL APPLICATION CIRCUITS

Figure 13: Dual USB Type-C 5V/3A DFP Ports

Figure 14: Dual USB Type-A 5V/2.4A Ports

Figure 15: One Type-C 5V/3A DFP Port, One USB2 Type-A 5V/2.4A Port

NOTE:
11) See Figure 11 for the CC pins’ ESD protection enhancing details.
NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

PACKAGE INFORMATION

QFN-26 (5mmx5mm)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTE:
1) LAND PATTERNS OF PIN 2-4 AND 14-16 HAVE THE SAME LENGTH AND WIDTH.
2) LAND PATTERNS OF PIN 5 AND PIN 3 HAVE THE SAME LENGTH AND WIDTH.
3) ALL DIMENSIONS ARE IN MILLIMETERS.
4) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
5) REFERENCE IS MO-220.
6) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN