Description

The MPQ3369-AEC1 is a step-up converter with six channel current sources, designed to drive white LED arrays as backlighting in small-to-medium size LCD panels.

The MPQ3369-AEC1 uses peak current mode as its PWM control architecture to regulate the boost converter. Six channel current sources are applied into the LED cathode to adjust the LED brightness. It regulates the current in each LED string to the value set via an external current-setting resistor, with 2.5% current regulation accuracy between strings.

The MPQ3369-AEC1 employs a low on-resistor MOSFET and a low headroom voltage, designed for higher efficiency. It has a standard \(\text{I}^{2}\text{C} \) digital interface for ease of use. The switching frequency can be programmed by a resistor, \(\text{I}^{2}\text{C} \) interface, or external clock.

The device provides analog, PWM, and mix dimming mode with a PWM input. The dimming mode can be selected with the \(\text{I}^{2}\text{C} \) interface or the MIX/AD pin. It also has a phase shift function to eliminate noise during PWM dimming.

Robust protections are included to guarantee safe operation of the device. Protection modes include over-current protection (OCP), over-voltage protection (OVP), over-temperature protection (OTP), LED short, and open protection. There is also an option that decreases the LED current automatically at higher temperatures.

The MPQ3369-AEC1 is available in QFN-24 (4mmx4mm) and TSSOP28-EP packages.

Features

- 3.5V to 36V Input Voltage Range
- 6 Channels with Max 100mA per Channel
- Internal 100m\(\Omega \), 50V MOSFET
- Programmable Up to 2.2MHz \(f_{\text{SW}} \)
- External Sync SW Function
- Multi-Dimming Operation Mode through PWM Input, Including:
 - Direct PWM Dimming
 - Analog Dimming
 - Mix Dimming with 25%/12.5% Transfer Point
- 15000:1 Dim Ratio in PWM Dim at \(f_{\text{PWM}} \leq 200\text{Hz} \)
- 200:1 Dim Ratio at Analog Dim through PWM Dim Signal Input
- Excellent EMI Performance, Frequency Spread Spectrum
- \(\text{I}^{2}\text{C} \) Interface
- Phase Shift Function for PWM Dimming
- 2.5% Current Matching
- Cycle-by-Cycle Current Limit
- Disconnect VOUT from VIN
- Optional LED Current Auto-Decrement at High Temperature
- LED Short/Open, OTP, OCP, Inductor Short Protection
- Programmable LED Short Threshold
- Programmable OVP Threshold
- Fault Indicator Signal Output
- Available in QFN-24 (4mmx4mm) and TSSOP28-EP Packages
- AEC-Q100 Qualified

Applications

- Tablet/Notebook
- Automotive Display
TYPICAL APPLICATION

![Circuit Diagram](image-url)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQ3369GR-AEC1*</td>
<td>QFN-24 (4mmx4mm)</td>
<td>See Below</td>
</tr>
<tr>
<td>MPQ3369GF-AEC1**</td>
<td>TSSOP28-EP</td>
<td>See Below</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (e.g. MPQ3369GR-AEC1-Z).
** For Tape & Reel, add suffix –Z (e.g. MPQ3369GF-AEC1-Z).

TOP MARKING (MPQ3369GR-AEC1)

MPS	YYYY	WW	MP3369	LLLLL

MPS: MPS prefix
YYYY: Year code
WW: Week code
MP3369: Part number
LLLLL: Lot number

TOP MARKING (MPQ3369GF-AEC1)

MPS	YYYY	WW	MP3369	LLLLLLLLL

MPS: MPS prefix
YYYY: Year code
WW: Week code
MP3369: Part number
LLLLLLLLL: Lot number
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>QFN-24 Pin #</th>
<th>TSSOP28-EP Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>DIM</td>
<td>PWM signal input pin. Apply a PWM signal on DIM for brightness control. Pulled low internally. A 100Hz to 20kHz PWM signal is recommended.</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>MIX/AD</td>
<td>Dimming mode set pin. MIX/AD is a current-source output (18μA). Connect a resistor to program its voltage. When MIX/AD is low-level (<0.3V), mix dimming is adopted. When MIX/AD is mid-level (0.5V to 0.8V), PWM dimming is adopted. When MIX/AD is high-level (1.0V to 1.3V), analog dimming is adopted. When MIX/AD is floated, the dimming mode is set by the internal MODE register.</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>FREQ/SYNC</td>
<td>Switching frequency setting and SYNC pin. The switching frequency is decided by the voltage and current on this pin. Connect a resistor between FREQ/SYNC and GND to set the converter's switching frequency, or connect an external clock to the sync boost switching frequency. Leave FREQ/SYNC floating if the internal switching frequency set register FSW1:0 is used.</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>EN</td>
<td>IC enable pin. Pull EN high to enable the IC. When EN is pulled low, the IC enters shutdown.</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>SCL/PSE</td>
<td>I²C interface clock input pin. Tie SDA/PSE together with SCL/PSE and pull up to 0.75V to 1V to enable the phase-shift PWM dimming function.</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>SDA/PSE</td>
<td>I²C interface data input pin. Tie SCL/PSE together with SDA/PSE and pull up to 0.75V to 1V to enable the phase-shift PWM dimming function.</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>COMP</td>
<td>Compensation pin.</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>FF</td>
<td>Fault flag pin. Open drain during normal operation, pulled low in any fault mode.</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>ISET</td>
<td>LED current setting. Tie a current-setting resistor from ISET to GND to program the current in each LED string.</td>
</tr>
</tbody>
</table>
PIN FUNCTIONS (continued)

<table>
<thead>
<tr>
<th>QFN-24 Pin #</th>
<th>TSSOP28-EP Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>14</td>
<td>AGND</td>
<td>Analog ground.</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>LED6</td>
<td>LED string 6 current input. Connect the LED string 6 cathode to this pin.</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>LED5</td>
<td>LED string 5 current input. Connect the LED string 5 cathode to this pin.</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>LED4</td>
<td>LED string 4 current input. Connect the LED string 4 cathode to this pin.</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
<td>LED3</td>
<td>LED string 3 current input. Connect the LED string 3 cathode to this pin.</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>LED2</td>
<td>LED string 2 current input. Connect the LED string 2 cathode to this pin.</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>LED1</td>
<td>LED string 1 current input. Connect the LED string 1 cathode to this pin.</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>PGND</td>
<td>Step-up converter power ground.</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>SW</td>
<td>Drain for the internal low-side MOSFET switch. Connect the power inductor to SW.</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>OVP</td>
<td>Over-voltage protection pin. Connect a resistor divider from OVP to GND to program the OVP threshold.</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>STH</td>
<td>Short LED protection threshold set pin. STH is a current-source output (18μA). Connect a resistor to program its voltage. Float this pin if the internal short LED protection threshold set register TH_S 1:0 is used.</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>FSP</td>
<td>Switching frequency spread spectrum pin. FSP is a current-source output (18μA). Connect a resistor to program its voltage. Float this pin to follow the internal register setting.</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>VCC</td>
<td>5V LDO output pin. VCC provides power for the internal logic and gate driver. Place a ceramic capacitor as close to this pin as possible to reduce noise.</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>SD</td>
<td>External disconnect PMOS gate drive pin. Turns off the external PMOS in a fault condition. Float this pin if not used.</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>VIN</td>
<td>Power supply input. VIN supplies power to the IC.</td>
</tr>
<tr>
<td>2, 4, 22, 24</td>
<td>NC</td>
<td></td>
<td>No connection.</td>
</tr>
<tr>
<td>Exposed pad</td>
<td>Exposed pad</td>
<td>AGND</td>
<td>Chip ground. Connect exposed pad to AGND.</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS (1)

- V_{IN}: -0.3V to +42V
- V_{SW}, V_{LED1} to V_{LED6}: -0.5V to +50V
- V_{SD}: -1.0V for $<$100ns
- V_{IN}: 6V to V_{IN}
- All other pins: -0.3V to +6V
- LED1-6 ESD: >7kV
- Junction temperature: 150°C
- Lead temperature: 260°C
- Continuous power dissipation ($T_A = 25°C$) (2)
 - QFN-24 (4mmx4mm): 2.97W
 - TSSOP28-EP: 3.9W

Recommended Operating Conditions (3)

- Supply voltage (V_{IN}): 3.5V to 36V
- Operating junction temp: -40°C to +125°C

<table>
<thead>
<tr>
<th>Thermal Resistance (4)</th>
<th>θ_{JA}</th>
<th>θ_{JC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN-24 (4mmx4mm)</td>
<td>42</td>
<td>9....°C/W</td>
</tr>
<tr>
<td>TSSOP28-EP</td>
<td>32</td>
<td>6....°C/W</td>
</tr>
</tbody>
</table>

Notes:
1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on JESD51-7, 4-layer PCB.
ELECTRICAL CHARACTERISTICS

$V_{IN} = 12V$, $V_{EN} = 2V$, $T_J = -40^\circ C$ to $+125^\circ C$, typical value is at $T_J = 25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating input voltage</td>
<td>V_{IN}</td>
<td></td>
<td>3.5</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply current (quiescent)</td>
<td>I_Q</td>
<td>No switching</td>
<td></td>
<td>5</td>
<td>36</td>
<td>mA</td>
</tr>
<tr>
<td>Supply current (shutdown)</td>
<td>I_{ST}</td>
<td>$V_{EN} = 0V$, $V_{IN} = 12V$</td>
<td></td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input UVLO threshold</td>
<td>$V_{IN,UVLO}$</td>
<td>Rising edge</td>
<td>3.1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input UVLO hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>LDO output voltage</td>
<td>V_{CC}</td>
<td>$V_{EN} = 2V$, $6V < V_{IN} < 36V$, $0 < I_{VCC} < 10mA$</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN on threshold</td>
<td>$V_{EN,ON}$</td>
<td>V_{EN} rising</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN off threshold</td>
<td>$V_{EN,OFF}$</td>
<td>V_{EN} falling</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN pull-down resistance</td>
<td>R_{EN}</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Step-Up Converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-side MOSFET on resistance</td>
<td>$R_{DS,LS}$</td>
<td>$V_{IN} = 12V$</td>
<td>100</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SW leakage current</td>
<td>$I_{SW,LK}$</td>
<td>$V_{SW} = 45V$</td>
<td></td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_{SW}</td>
<td></td>
<td>1.98</td>
<td>2.2</td>
<td>2.42</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{FREQ} = 10k\Omega$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_{FREQ} = 40k\Omega$</td>
<td>495</td>
<td>550</td>
<td>605</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FSW1:0 = 01$, $FREQ$ float</td>
<td>340</td>
<td>400</td>
<td>460</td>
<td>kHz</td>
</tr>
<tr>
<td>FREQ voltage</td>
<td>V_{FREQ}</td>
<td></td>
<td>0.57</td>
<td>0.6</td>
<td>0.63</td>
<td>V</td>
</tr>
<tr>
<td>FSP pull-up current</td>
<td>I_{FSP}</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Maximum duty cycle</td>
<td>D_{MAX}</td>
<td>$f_{SW} = 1MHz$</td>
<td>90</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Cycle-by-cycle current limit</td>
<td>$I_{SW,LIMIT}$</td>
<td>$T_J = 25^\circ C$, duty = 90%</td>
<td>2.6</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duty = 90%</td>
<td>2.3</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Current limit protection</td>
<td>I_{CL}</td>
<td>To trigger current limit protection</td>
<td>7.5</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>SYNC input low threshold</td>
<td>$V_{SYNC,LO}$</td>
<td>V_{SYNC} falling</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SYNC input high threshold</td>
<td>$V_{SYNC,HI}$</td>
<td>V_{SYNC} rising</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PSE active threshold</td>
<td>V_{PSE}</td>
<td>Phase shift enabled</td>
<td>0.75</td>
<td>0.9</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>COMP transconductance</td>
<td>G_{COMP}</td>
<td>$\Delta I_{COMP} \leq 10\mu$A</td>
<td>100</td>
<td></td>
<td></td>
<td>μA/V</td>
</tr>
<tr>
<td>COMP source current limit</td>
<td>$I_{COMP,SO}$</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>COMP sink current limit</td>
<td>$I_{COMP,SI}$</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Current Dimming

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM input low threshold</td>
<td>$V_{DIM,LO}$</td>
<td>V_{DIM} falling</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>DIM input high threshold</td>
<td>$V_{DIM,HI}$</td>
<td>V_{DIM} rising</td>
<td>1.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>MIX/AD input low threshold</td>
<td>$V_{MIX,LO}$</td>
<td>Mix dimming threshold</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>MIX/AD input middle threshold</td>
<td>$V_{MIX,MID}$</td>
<td>PWM dimming threshold</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>MIX/AD input high threshold</td>
<td>$V_{MIX,HI}$</td>
<td>Analog dimming threshold</td>
<td>1.0</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

\(V_{\text{IN}} = 12\,\text{V}, \ V_{\text{EN}} = 2\,\text{V}, \ T_{J} = -40^\circ\text{C} \text{ to } +125^\circ\text{C}, \) typical value is at \(T_{J} = 25^\circ\text{C}, \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX/AD pull-up current</td>
<td>(I_{\text{MIX}})</td>
<td>MIX/AD pull-up current</td>
<td>18</td>
<td></td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>Mix dimming transfer point</td>
<td></td>
<td>MIXTP bit = 0</td>
<td>25</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Transfer point hysteresis</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Mix dimming output dimming frequency</td>
<td>(f_{\text{MIX}})</td>
<td>MIXFR bit = 0</td>
<td>200</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>LED Current Regulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDX regulation voltage</td>
<td>(V_{\text{HD}})</td>
<td>(I_{\text{LED}} = 20,\text{mA})</td>
<td>350</td>
<td></td>
<td></td>
<td>(\text{mV})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{\text{LED}} = 100,\text{mA})</td>
<td>850</td>
<td>1000</td>
<td></td>
<td>(\text{mV})</td>
</tr>
<tr>
<td>Current matching (^{(5)})</td>
<td></td>
<td>(I_{\text{LED}} = 20,\text{mA})</td>
<td>-2.5</td>
<td></td>
<td>+2.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{\text{LED}} = 100,\text{mA})</td>
<td>-2.5</td>
<td></td>
<td>+2.5</td>
<td>%</td>
</tr>
<tr>
<td>ISET voltage</td>
<td>(V_{\text{ISET}})</td>
<td>(R_{\text{ISET}} = 24.9,\text{k}\Omega, \ T_{J} = 25^\circ\text{C})</td>
<td>48.75</td>
<td>50</td>
<td>51.25</td>
<td>(\text{mA})</td>
</tr>
<tr>
<td>LED current</td>
<td>(I_{\text{LED}})</td>
<td>(I_{\text{LED}} = 1 \div 50 \times 50,\text{mA} = 1,\text{mA})</td>
<td>0.9</td>
<td>1.05</td>
<td>1.2</td>
<td>(\text{mA})</td>
</tr>
<tr>
<td>Phase shift degree</td>
<td></td>
<td>LED1–6 enable</td>
<td>60</td>
<td></td>
<td></td>
<td>()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LED1–4 enable</td>
<td>90</td>
<td></td>
<td></td>
<td>()</td>
</tr>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-voltage protection threshold</td>
<td>(V_{\text{OVP}})</td>
<td></td>
<td>1.9</td>
<td>2</td>
<td>2.1</td>
<td>(\text{V})</td>
</tr>
<tr>
<td>OVP hysteresis</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>(\text{mV})</td>
</tr>
<tr>
<td>OVP UVLO threshold</td>
<td>(V_{\text{OVP_UV}})</td>
<td>Step-up converter fails</td>
<td>100</td>
<td></td>
<td></td>
<td>(\text{mV})</td>
</tr>
<tr>
<td>LEDX over-voltage threshold</td>
<td>(V_{\text{LED_OV}})</td>
<td>LEDS bits = 01</td>
<td>5</td>
<td></td>
<td></td>
<td>(\text{V})</td>
</tr>
<tr>
<td>LEDX over-voltage fault timer</td>
<td></td>
<td></td>
<td>7.7</td>
<td></td>
<td></td>
<td>(\text{ms})</td>
</tr>
<tr>
<td>LEDX UVLO threshold</td>
<td>(V_{\text{LED_UV}})</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>(\text{mV})</td>
</tr>
<tr>
<td>Thermal shutdown threshold (^{(6)})</td>
<td>(T_{\text{ST}})</td>
<td>Rising edge</td>
<td>170</td>
<td></td>
<td></td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis</td>
<td>20</td>
<td></td>
<td></td>
<td>(^\circ\text{C})</td>
</tr>
<tr>
<td>SD pull-down current</td>
<td>(I_{\text{SD}})</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>SD voltage (respective to (V_{\text{IN}}))</td>
<td>(V_{\text{SD_IN}})</td>
<td>(V_{\text{IN}} = 12,\text{V}, \ V_{\text{IN}} - V_{\text{SD}})</td>
<td>6</td>
<td></td>
<td></td>
<td>(\text{V})</td>
</tr>
<tr>
<td>STH pull-up current</td>
<td>(I_{\text{STH}})</td>
<td>STH pull-up current</td>
<td>18</td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>(\text{I^2\text{C}}) Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input logic low</td>
<td>(V_{\text{IL}})</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>(\text{V})</td>
</tr>
<tr>
<td>Input logic high</td>
<td>(V_{\text{IH}})</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
<td>(\text{V})</td>
</tr>
<tr>
<td>Output logic low</td>
<td>(V_{\text{OL}})</td>
<td>(I_{\text{LOAD}} = 3,\text{mA})</td>
<td>0.4</td>
<td></td>
<td></td>
<td>(\text{V})</td>
</tr>
<tr>
<td>SCL clock frequency</td>
<td>(t_{\text{SCL}})</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>(\text{kHz})</td>
</tr>
<tr>
<td>SCL high time</td>
<td>(t_{\text{HIGH}})</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>(\mu\text{s})</td>
</tr>
<tr>
<td>SCL low time</td>
<td>(t_{\text{LOW}})</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>(\mu\text{s})</td>
</tr>
<tr>
<td>Data set-up time</td>
<td>(t_{\text{SU_DAT}})</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>(\text{ns})</td>
</tr>
<tr>
<td>Data hold time</td>
<td>(t_{\text{HD_DAT}})</td>
<td></td>
<td>0</td>
<td>0.9</td>
<td></td>
<td>(\mu\text{s})</td>
</tr>
<tr>
<td>Set-up time for repeated start</td>
<td>(t_{\text{SU_STA}})</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>(\mu\text{s})</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

$V_{IN} = 12V$, $V_{EN} = 2V$, $T_J = -40^\circ C$ to $+125^\circ C$, typical value is at $T_J = 25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold time for start</td>
<td>$t_{HD,STA}$</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Bus free time between start and stop condition</td>
<td>t_{BUF}</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Set-up time for stop condition</td>
<td>$t_{SU,STO}$</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Rise time of SCL and SDA</td>
<td>t_R</td>
<td>$20 + 0.1 \times C_B$</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall time of SCL and SDA</td>
<td>t_F</td>
<td>$20 + 0.1 \times C_B$</td>
<td>300</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width of suppressed spike</td>
<td>t_{SP}</td>
<td></td>
<td>0</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Capacitance bus for each bus line</td>
<td>C_B</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
5) Matching is defined as the difference of the maximum to minimum current divided by 2 times the average current.
6) Guaranteed by design.

Figure 1: I2C-Compatible Interface Timing Diagram
TYPICAL PERFORMANCE CHARACTERISTICS

\[V_{IN} = 12V, \ L = 22\mu H, \ \text{LED} = 6P12S, \ f_{SW} = 400kHz, \ I_{SET} = 50mA, \ T_A = 25^\circ C, \] unless otherwise noted.

Steady State

- \(f_{SW} = 400kHz \)

VIN Power-On

EN Power-On

PWM Dimming

- \(f_{PWM} = 200Hz, \ D_{PWM} = 50\% \)

- \(f_{PWM} = 20kHz, \ D_{PWM} = 50\% \)
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 12\text{V}$, $L = 22\mu\text{H}$, LED = 6P12S, $f_{SW} = 400\text{kHz}$, $I_{SET} = 50\text{mA}$, $T_A = 25\degree\text{C}$, unless otherwise noted.

PWM Dimming

$f_{PWM} = 200\text{Hz}$, $D_{PWM} = 0.01\%$

Mix Dimming

$f_{PWM} = f_{(\text{ILED})} = 200\text{Hz}$, $D_{PWM} = 10\%$

Phase Shift Function

$f_{PWM} = 200\text{Hz}$, PWM dimming, 6-channel enable

Frequency Spread Spectrum

$f_{PWM} = 400\text{Hz}$, 1/100 of center frequency
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 12\text{V}$, $L = 22\mu\text{H}$, LED = 6P12S, $f_{SW} = 400\text{kHz}$, $I_{SET} = 50\text{mA}$, $T_A = 25\text{°C}$, unless otherwise noted.

- **Open LED Protection**: Open 1 string at working
 - CH1: V_{SW} 20V/div.
 - CH2: V_{FF} 5V/div.
 - CH3: I_L 500mA/div.
 - CH4: I_{LED} 200mA/div.

- **Short LED Protection**: Short 1 string at working
 - CH1: V_{LED} 5V/div.
 - CH2: V_{FF} 5V/div.
 - CH3: I_L 500mA/div.
 - CH4: I_{LED} 200mA/div.

- **Short Inductor Protection**
 - CH1: V_{SW} 20V/div.
 - CH2: V_{FF} 5V/div.
 - CH3: I_{SHORT} 5A/div.
 - CH4: I_{LED} 200mA/div.

- **Short Diode Protection**
 - CH1: V_{SW} 20V/div.
 - CH2: V_{FF} 5V/div.
 - CH3: I_{SHORT} 5A/div.
 - CH4: I_{LED} 200mA/div.

- **Short VOUT to GND Protection**
 - CH1: V_{SW} 20V/div.
 - CH2: V_{LED} 5V/div.
 - CH3: I_L 5A/div.
 - CH4: I_{LED} 200mA/div.

- **Thermal Protection**
 - CH1: V_{SW} 20V/div.
 - CH2: V_{LED} 5V/div.
 - CH3: I_L 1A/div.
 - CH4: I_{LED} 200mA/div.
Figure 2: Functional Block Diagram
OPERATION

The MPQ3369-AEC1 is a programmable, constant-frequency, peak current mode step-up converter with up to six channels of regulated current sources to drive the array of white LEDs.

Internal 5V Regulator

The MPQ3369-AEC1 includes an internal linear regulator (VCC). When VIN exceeds 6V, this regulator outputs a 5V power supply to the internal MOSFET switch gate driver and the internal control circuitry. The VCC voltage drops to 0V when the chip shuts down. The chip remains disabled until VCC exceeds the UVLO threshold.

System Start-Up

When enabled, the MPQ3369-AEC1 checks the topology connection. The IC draws current from SD to enable the input disconnect PMOS to be turned on (if this PMOS is used). After a 500µs delay, the IC monitors OVP to see if the output is shorted to GND. If the OVP voltage is less than 100mV, the IC disables and latches off. The MPQ3369-AEC1 then continues to check other safety limits (e.g. LED open, over-voltage protection). If all protection tests pass, the IC starts boosting the step-up converter with an internal soft start.

The recommended power-on sequence is VIN → EN → I²C (optional) → PWM dim signal.

Step-Up Converter

The MPQ3369-AEC1 employs peak-current mode control to regulate the output energy. At the beginning of each switching cycle, the internal clock turns on the internal N-MOSFET. In normal operation, the minimum turn-on time is about 100ns. A stabilizing ramp added to the output of the current-sense amplifier prevents sub-harmonic oscillations for duty cycles greater than 50%. This result is fed into the PWM comparator. When the summed voltage reaches the output voltage of the error amplifier, the internal MOSFET turns off.

The output voltage of the internal error amplifier is an amplified signal of the difference between the reference voltage and the feedback voltage. The converter automatically chooses the lowest active LEDx pin voltage to provide a high enough output voltage to power all the LED arrays.

If the feedback voltage drops below the reference voltage, the output of the error amplifier increases. More current then flows through the MOSFET, increasing the power delivered to the output. This forms a closed loop that regulates the output voltage.

During light-load operation, especially in the case of VOUT ≈ VIN, the converter runs in pulse-skipping mode. In this mode, the MOSFET turns on for a minimum on time, then the converter discharges the power to the output for the remaining period. The external MOSFET remains off until the output voltage needs to be boosted again.

Dimming Control

The MPQ3369-AEC1 provides analog, PWM, and mix dimming methods. The dimming mode can be set with the I²C or by connecting a different resistor at MIX/AD. The voltage of MIX/AD is calculated with Equation (1):

$$V_{\text{MIX/AD}}(\text{mV}) = 18(\mu\text{A}) \times R_{\text{MIX/AD}}(\text{k}\Omega)$$ (1)

Where $V_{\text{MIX/AD}}$ is the voltage and $R_{\text{MIX/AD}}$ is the resistor at MIX/AD.

Mix Dimming Mode

There are two different ways the MPQ3369-AEC1 works in mix dimming mode, with 25% or 12.5% as its transfer point (selected through the internal register).

The first way is to connect a resistor and set MIX/AD to low (<0.3V).

The second is to float MIX/AD, and set the internal mode select register MODE1:0 = 00 through the I²C.

A PWM dimming signal is applied to DIM. When the dimming duty is greater than 25%, analog dimming is adopted, and the LED current amplitude follows the duty of PWM. When the dimming duty is less than 25%, PWM dimming is used (see Figure 3). The LED current amplitude remains at 1/4 of the full-scale current, and the output dimming duty is 4 times the duty of the input PWM signal. There are two options for output dimming frequency when using mix dimming: 200Hz (default) or 23kHz.
(no audible noise, but larger minimum dimming duty).

This does not change based on the input PWM dimming frequency. The output dimming frequency is selected with the mix dimming output frequency selection bit through the I²C.

This function eliminates audible noise and improves the dimming performance in a small dimming ratio.

Figure 3: Mix Dimming with 25% Transfer Point

Direct PWM Dimming

Connect a resistor to set MIX/AD to a middle level (0.5V to 0.8V), or float MIX/AD and set the internal mode select register MODE1:0 = 01 through the I²C.

When a PWM signal is applied to DIM, the amplitude of the LED current remains at the LED full-scale, and the LED current is chopped by the input PWM signal. The LED current duty follows the PWM input duty, and the LED current frequency is the same as the PWM input.

Analog Dimming Mode

Connect a resistor to set MIX/AD to a high level (1V to 1.3V), or float MIX/AD and set the internal mode select register MODE = 10 through the I²C.

The PWM input signal is calculated by an internal counter. The amplitude of the LED current is equal to $I_{SET} \times D_{DIM}$, where I_{SET} is the full-scale LED current and D_{DIM} is the duty of the input PWM signal. For better analog dimming performance, a 100Hz to 20kHz PWM signal is recommended.

To ensure good performance with a small dimming ratio, the minimum LEDx voltage shifts up to 2V when the dimming duty is below 10%. Analog dimming supports a 200:1 dimming ratio.

Deep Dimming Ratio for PWM Dimming

When the output dimming on time is less than 7μs, the output voltage is regulated to 0.93 of the OVP voltage (see Figure 4).

Figure 4: Deep Dimming Ratio for PWM Dimming

Unused LED Channel Setting

If the LEDx pin of an unused channel is connected to GND, the MPQ3369-AEC1 can automatically detect the unused LED string and remove it from the control loop during start-up. If employing five strings, connect LED6 to GND. If using four strings, connect LED5 and LED6 to GND, and so on.

The MPQ3369-AEC1 can also disable the unused string(s) with the internal register (CH2:0 bit):

- CH2:0 = 000: All 6 channels are in use
- CH2:0 = 001: LED1–5 are in use
- CH2:0 = 010: LED1–4 are in use
- CH2:0 = 011: LED1–3 are in use
- CH2:0 = 100: LED1–2 are in use
- CH2:0 = 101: LED1 is in use

Phase Shift Function

To reduce inrush current and eliminate audible noise during PWM dimming, the MPQ3369-AEC1 employs a phase shift function. Two methods can be used to enable the phase shift function:

The first is to connect SCL/PSE and SDA/PSE together to about 0.75V to 1V.

The second is to set the internal register PSE bit to 1 via the I²C.

The LED channels' current source is phase-shifted when the IC employs PWM dimming. The shifted phase depends on which LED channels are in use, determined using Equation (2):
\[\text{Phase}(\%) = \frac{360}{n}(\%) \]

(2)

Where \(n \) is the LED channel in use. If all six channels are in use, the shifted phase is 60\(^\circ \). LED1 directly follows the input PWM signal, and LED2 lags 60\(^\circ \) behind (see Figure 5).

![Figure 5: Phase Shift with Six Channels](image)

Figure 6 shows the phase shift function with four channels enabled. The shifted phase in this case is 90\(^\circ \).

![Figure 6: Phase Shift with Four Channels](image)

In phase shift operation, the channels must be disabled in descending order of channel number. For example, if three strings are employed in application, then channels 6, 5, and 4 are disabled.

It is not recommended to tie two channels for one string of LED with the phase shift function.

Frequency Spread Spectrum

The MPQ3369-AEC1 uses switching frequency jitter to spread the switching frequency spectrum. This reduces the spectrum spike around the switching frequency and its harmonic frequencies.

The FSP pin can program the dithering range, and the modulation frequency is fixed to 1/150 of switching frequency:

- When FSP < 0.3V, the jitter frequency is 1/20 of the central frequency
- When FSP = 0.4V to 1.4V, the jitter frequency is 1/32 of the central frequency
- Float FSP to follow the internal I\(^2 \)C setting

The frequency jitter range selected by the FSPR bit determines the range:

- When FSPR = 0 (default), the jitter frequency is 1/20 of the central frequency
- When FSPR = 1, the jitter frequency is 1/32 of the central frequency

The modulation frequency is selected by the FSPMF1:0 bit:

- When FSPMF1:0 = 00, the modulation frequency is 1/100 of the switching frequency
- When FSPMF1:0 = 01, the modulation frequency is 1/150 of the switching frequency
- When FSPMF1:0 = 10, the modulation frequency is 1/200 of the central frequency
- When FSPMF1:0 = 11, default, the function is disabled

Protection

The MPQ3369-AEC1 includes open LED protection, short LED protection, short LEDx to GND protection, over-current protection, short VOUT to GND protection, and thermal protection. Once the protection is triggered, FF pulls to GND and the corresponding fault bit is set to 1. After the IC recovers from protection, FF releases to high with a 750\(\mu \)s delay.

Open LED Protection

Open string protection is achieved through detecting the voltage of OVP and LEDx. During operation, if one string is open, the respective LEDx voltage is low to ground, and the IC keeps charging the output voltage until it reaches the OVP threshold.

If OVP has been triggered, the chip stops switching and marks off the fault string, which has an LEDx pin voltage below 100mV. Once marked, the remaining LED strings force the output voltage back into normal regulation. The string with the largest voltage drop determines the output regulation value.
The marked-off string sends a 10μs pulse current to check whether an open fault is removed after every 500μs delay, so open string protection is recoverable.

Short String Protection

The MPQ3369-AEC1 monitors the LEDx voltages to determine whether a short string fault has occurred. When one or more strings are shorted, the respective LEDx pins tolerate high voltage stress. If an LEDx voltage is higher than the short protection threshold, an internal counter starts. When this fault condition lasts for 7.7ms (D_{PWM} = 100%), the fault string is marked off. Once a string is marked off, it disconnects from the output voltage loop until the short is removed.

The short protection threshold can be set one of two ways:

The first option is to connect a resistor at STH. STH outputs a 18μA current source. The short protection threshold is 10 times the voltage on STH. The threshold is calculated using Equation (3):

\[
V_{\text{STH}}(V) = 0.18 \times R_{\text{STH}} \text{ (kΩ)}
\]

(3)

The second option is to set the internal register TH_S1:0 when STH is floating.

When the LEDx voltage exceeds the threshold for 480ms (D_{PWM} = 100%), all strings are marked off. The IC remains on standby until the strings release from shorting. Enable or disable this function through SEN.

The marked-off string sends a 10μs pulse current to check if a short fault is removed after every 500μs delay, so short string protection is recoverable.

Short LEDx to GND Protection

When LEDx shorts to GND, the COMP voltage increases and saturates. When the COMP saturation time lasts for 20ms or 40ms (the time can be selected by the internal register bit TCOMP), protection is triggered. Then FF pulls low and SD pulls high to turn on the external P-MOSFET. The IC also latches off.

Short VOUT to GND Protection

When VOUT shorts to GND, the output voltage decreases. When the voltage of the OVP pin reaches the OVP UVLO threshold for 10μs, the protection is triggered and SD pulls high to turn off the external P-MOSFET. VOUT disconnects from VIN, and the IC latches off.

Cycle-by-Cycle Current Limit

To prevent the external components from exceeding the current stress rating, the IC has cycle-by-cycle current limit protection. When the current exceeds the current limit value, the IC stops switching until the next clock cycle.

Latch-Off Current Limit Protection

Extreme conditions, such as an inductor or diode short, may cause damage to the device. To avoid this, the MPQ3369-AEC1 provides a latch-off current limit protection when the current flowing through the internal MOSFET reaches the threshold (7.5A), and lasts for five switching cycles.

Thermal Protections

To prevent the IC from damage when operating at exceedingly high temperatures, the MPQ3369-AEC1 implements thermal protections by detecting the silicon die temperature.

Over-Temperature LED Current Decrement

When the die temperature exceeds 140°C, the MPQ3369-AEC1 3369 automatically decreases the LED current amplitude (see Figure 7).

![Figure 7: I_LED Decrease with Temperature](image-url)

This function is enabled by the over-temperature current decrement bit OTID:

- When OTID = 0, the over-temperature current decrement is disabled
- When OTID = 1 (default), the over-temperature current decrement is enabled
Thermal Shutdown

When the die temperature exceeds the upper threshold \(T_{ST} \), the IC shuts down and recovers to normal operation. When the temperature drops below the lower threshold, the IC recovers. The hysteresis value is typically 20°C.

I²C Interface Register Description

I²C Chip Address

The 7-bit MSB device address is 0x38. After the start condition, the I²C-compatible master sends a 7-bit address followed by an eighth read (1) or write (0) bit.

The following bit indicates the register address to/from which the data will be written/read.

```
0 1 1 1 0 0 0 0 R/W
```

Register Mapping:

<table>
<thead>
<tr>
<th>Add</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00H</td>
<td>OTID</td>
<td>MODE1</td>
<td>MODE0</td>
<td>MIXTP</td>
<td>MIXFR</td>
<td>FSPMF1</td>
<td>FSPMF0</td>
<td>FSPR</td>
</tr>
<tr>
<td>01H</td>
<td>PSEN</td>
<td>TH_S1</td>
<td>TH_S0</td>
<td>FSW1</td>
<td>FSW0</td>
<td>CH2</td>
<td>CH1</td>
<td>CH0</td>
</tr>
<tr>
<td>02H</td>
<td>SEN</td>
<td>TCOMP</td>
<td>FT_LEDG</td>
<td>FT_OTP</td>
<td>FT_UVP</td>
<td>FT_OCP</td>
<td>FT_LEDS</td>
<td>FT_LEDO</td>
</tr>
<tr>
<td>03H</td>
<td>ID7</td>
<td>ID6</td>
<td>ID5</td>
<td>ID4</td>
<td>ID3</td>
<td>ID2</td>
<td>ID1</td>
<td>ID0</td>
</tr>
</tbody>
</table>

Note: Leave corresponding pins floating if internal registers are used.
Table 1: Function Set Register 1

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Access</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>OTID</td>
<td>RW</td>
<td>1</td>
<td>Over-temperature LED current decrement function enable bit. 0: Disabled 1: Enabled</td>
</tr>
<tr>
<td>6:5</td>
<td>MODE</td>
<td>RW</td>
<td>00</td>
<td>Dimming mode selection bit. 00: Mix dimming 01: PWM dimming 10: Analog dimming 11: Reserved Float MIX/AD if this register is adopted.</td>
</tr>
<tr>
<td>4</td>
<td>MIXTP</td>
<td>RW</td>
<td>0</td>
<td>Mix dimming transfer point selection bit. 0: 25% transfer point 1: 12.5% transfer point</td>
</tr>
<tr>
<td>3</td>
<td>MIXFR</td>
<td>RW</td>
<td>0</td>
<td>Mix dimming output frequency selection bit. 0: 200Hz 1: 23kHz</td>
</tr>
<tr>
<td>2:1</td>
<td>FSPMF1:0</td>
<td>RW</td>
<td>11</td>
<td>Frequency spread spectrum modulation frequency selection bit. 00: 1/100 of central frequency 01: 1/150 of central frequency 10: 1/200 of central frequency 11: Frequency spread spectrum function disabled Float FSP if this register is used.</td>
</tr>
<tr>
<td>0</td>
<td>FSPR</td>
<td>RW</td>
<td>0</td>
<td>Frequency spread spectrum jitter range selection bit. 0: 1/20 of central frequency 1: 1/32 of central frequency Float FSP if this register is used.</td>
</tr>
</tbody>
</table>
Table 2: Function Set Register 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Access</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | PSE | RW | 0 | Phase shift enable bit.
0: Phase shift disabled
1: Phase shift enabled |
| 6:5 | TH_S1:0 | RW | 01 | LED short protection threshold set bit.
00: 2.5V
01: 5V
10: 7.5V
11: 10V |
| 4:3 | FSW1:0 | RW | 01 | Switching frequency set bit.
00: 200kHz
01: 400kHz
10: 1MHz
11: 2.2MHz
Float FREQ if this register is used. |
| 2:0 | CH2:0 | RW | 000 | Channel selection bit.
000: All 6 channels are in use
001: LED1–5 are in use
010: LED1–4 are in use
011: LED1–3 are in use
100: LED1–2 are in use
101: LED1 is in use
110, 111: Reserved |
Table 3: Fault Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Access</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | SEN | RW | 0 | Short all LED protection @ $D_{PWM} > 2\%$.
0: Disable
1: Enable |
| 6 | TCOMP | RW | 0 | COMP-saturated time select bit for short LEDx to GND.
0: 20ms
1: 40ms |
| 5 | FT_LEDG | R | 0 | LEDx short to GND protection fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.
0: No fault
1: Fault
The fault status can latch off until it is reset to 0 after this bit is read. |
| 4 | FT_OTP | R | 0 | Over-temperature protection fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.
0: No fault
1: Fault
The fault status can latch off until it is reset to 0 after this bit is read. |
| 3 | FT_UVP | R | 0 | Output under-voltage protection fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.
0: No fault
1: Fault
The fault status can latch off until it is reset to 0 after this bit is read. |
| 2 | FT_OCP | R | 0 | Over-current protection fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.
0: No fault
1: Fault
The fault status can latch off until it is reset to 0 after this bit is read. |
| 1 | FT_LEDS | R | 0 | LED current source short fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.
0: No fault
1: Fault
The fault status can latch off until it is reset to 0 after this bit is read. |
Table 4: ID Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Access</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>ID7:0</td>
<td>R</td>
<td>01100111</td>
<td>Device ID bits.</td>
</tr>
</tbody>
</table>

LED current source open fault indication bit. If a fault occurs, the fault bit remains 1 until readback or power reset.

0: No fault
1: Fault

The fault status can latch off until it is reset to 0 after this bit is read.
APPLICATION INFORMATION

LED Current Setting
The LED current amplitude is set by an external resistor connected from ISET to GND. The LED current amplitude setting is determined with Equation (4):

\[I_{\text{LED}}(\text{mA}) = \frac{1245}{R_{\text{ISET}}(\text{k}\Omega)} \]

For \(R_{\text{ISET}} = 24.9 \text{k}\Omega \), the LED current is 50mA.

Switching Frequency
The switching frequency can be programmed with a resistor, the I2C interface, or an external clock.

To program the frequency through an external resistor on FREQ/SYNC, use Equation (5) to determine the switching frequency:

\[f_{\text{SW}}(\text{kHz}) = \frac{22000}{R_{\text{OSC}}(\text{k}\Omega)} \]

For \(R_{\text{OSC}} = 44.2 \text{k}\Omega \), the switching frequency is set to 500kHz.

Synchronize the switching frequency through an external clock to improve EMI, efficiency, and thermal performance.

For setting the switching frequency bit (fSW1:0):

- 00: 200kHz
- 01: 400kHz
- 10: 1MHz
- 11: 2.2MHz

Float FREQ if the fSW1:0 bit is used.

Selecting the Inductor
The MPQ3369-AEC1 requires an inductor to supply a higher output voltage while being driven by the input voltage. A larger-value inductor results in less ripple current, lower peak inductor current, and less stress on the internal N-channel MOSFET. However, the larger-value inductor has a larger physical size, higher series resistance, and lower saturation current.

Choose an inductor that does not saturate under worst-case load conditions. Select the minimum inductor value to ensure that the boost converter works in continuous conduction mode with high efficiency and good EMI performance.

Calculate the required inductance values using Equation (6) and Equation (7):

\[L \geq \frac{\eta \times V_{\text{OUT}} \times D \times (1-D)^2}{2 \times f_{\text{SW}} \times I_{\text{LOAD}}} \]

\[D = 1 - \frac{V_{\text{IN}}}{V_{\text{OUT}}} \]

Where \(V_{\text{IN}} \) and \(V_{\text{OUT}} \) are the input and output voltages, \(f_{\text{SW}} \) is the switching frequency, \(I_{\text{LOAD}} \) is the LED load current, and \(\eta \) is the efficiency.

With the given inductor value, the inductor DC current rating is at least 40% greater than the maximum input peak inductor current for most applications. The inductor’s DC resistance should be as small as possible for higher efficiency.

Selecting the Output Capacitor
The output capacitor keeps the output voltage ripple small and ensures feedback loop stability. The output capacitor impedance must be low at the switching frequency. Ceramic capacitors with X7R dielectrics are recommended for their low ESR. For most applications, a 10μF ceramic capacitor is sufficient.
TYPICAL APPLICATION CIRCUITS

Figure 8: Typical Application Circuit
PACKAGE INFORMATION

QFN-24 (4mmx4mm)

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
4) JEDEC REFERENCE IS MO-220
5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN
PACKAGE INFORMATION

TSSOP28-EP

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

BOTTOM VIEW

DETAIL “A”

NOTE:

1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION, OR GATE BURR.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
5) DRAWING CONFORMS TO JEDEC MO-153, VARIATION AET.
6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.