DESCRIPTION

The MPM3807C is an easy-to-use, fully integrated, synchronous step-down power module with built-in MOSFET switches and an inductor. The device can achieve up to 2A of continuous output current (I_{OUT}) with excellent load and line regulation.

The constant-on-time (COT) control scheme provides fast transient response and eases loop stabilization. Fault protections include cycle-by-cycle current limiting and thermal shutdown.

An open-drain power good (PG) signal indicates whether the output exceeds 90% of its nominal voltage.

The MPM3807C is well-suited for a wide range of applications including high-performance digital signal processors (DSPs), advanced driver assistance system (ADAS) sensors, portable and mobile devices, and other space-constrained, low-power systems.

The MPM3807C requires a minimal number of readily available, standard external components. It is available in a small QFN-15 (3mmx4mmx1.6mm) package.

FEATURES

- **Designed for Automotive Applications:**
 - Wide 2.5V to 5.5V Operating Input Voltage (V_{IN}) Range
 - Up to 2A Output Current (I_{OUT})
 - 1% Feedback (FB) Accuracy
 - -40°C to +150°C Operating T_{J} Range
 - Available in AEC-Q100 Grade 1
- **High Performance for Improved Thermals:**
 - 70mΩ and 40mΩ Integrated Internal Power MOSFETs
- **Optimized for EMC and EMI:**
 - Forced Continuous Conduction Mode (FCCM) across the Full Load Range
 - 2.4MHz Switching Frequency (f_{SW})
 - MeshConnect™ Flip-Chip Package
- **Optimized for Board Size and BOM:**
 - Integrated Internal Power MOSFETs
 - Integrated Compensation Network
 - Available in a QFN-15 (3mmx4mmx1.6mm) Package
 - Fixed Output Options (1): 0.8V, 1V, 1.1V, 1.2V, 1.25V, 1.5V, 1.8V, 2.5V, 2.8V, 3.3V
- **Additional Features:**
 - EN for Power Sequencing
 - Power Good (PG)
 - 100% Duty Cycle
 - External Soft Start (SS) Control
 - Output Discharge
 - Output Over-Voltage Protection
 - Short-Circuit Protection (SCP) with Hiccup Mode
 - Available in a Wettable Flank Package

APPLICATIONS

- Camera Modules
- ADAS Sensors
- Automotive Infotainment
- Automotive V2X

1) See the Ordering Information section on page 3 for the exact availability of each fixed output version. Additional output voltages may be available. Contact MPS for details.

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive.
For MPS green status, please visit the MPS website under Quality Assurance. “MPS”, the MPS logo, and “Simple, Easy Solutions” are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

Note:

© 2022 MPS. All Rights Reserved.
MPM3807C – 5.5V, 2A, 2.4MHZ, SYNCHRONOUS STEP-DOWN MODULE, AEC-Q100

TYPICAL APPLICATION

Figure 1: Typical Application (Adjustable Output)

Figure 2: Typical Application (Fixed Output)

Efficiency vs. Load Current vs. Power Loss

V_OUT = 1.2V
Vin=2.5V
Vin=3.3V
Vin=5.5V

POWER LOSS (W)

LOAD CURRENT (mA)

EFFICIENCY (%)
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number* (2)</th>
<th>Output Voltage</th>
<th>Package</th>
<th>Top Marking</th>
<th>MSL Rating**</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM3807CGLE-AEC1***</td>
<td>Adjustable</td>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td>See Below</td>
<td>1</td>
</tr>
<tr>
<td>MPM3807CGLE-12-AEC1***</td>
<td>Fixed 1.2V</td>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td>See Below</td>
<td>1</td>
</tr>
<tr>
<td>MPM3807CGLE-18-AEC1***</td>
<td>Fixed 1.8V</td>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td>See Below</td>
<td>1</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix -Z (e.g. MPM3807CGLE-AEC1-Z).
**Moisture Sensitivity Level Rating
***Wettable flank

Note:
2) Additional output voltages may be available. Contact MPS for details.

TOP MARKING (MPM3807CGLE-AEC1)

```
MPYW
3807
CLLL
ME
```

MP: MPS prefix
Y: Year code
W: Week code
3807: First four digits of the part number
C: FCCM
LLL: Lot number
M: Module
E: Wettable flank frame

TOP MARKING (MPM3807CGLE-12-AEC1)

```
MPYW
3807
CLLL
ME12
```

MP: MPS prefix
Y: Year code
W: Week code
3807: First four digits of the part number
C: FCCM
LLL: Lot number
M: Module
E: Wettable flank frame
12: 1.2V fixed output version of MPM3807C
TOP MARKING (MPM3807CGLE-18-AEC1)

MPYW
3807
CLLL
ME18

MP: MPS prefix
Y: Year code
W: Week code
3807: First four digits of the part number
C: FCCM
LLL: Lot number
M: Module
E: Wettable flank frame
18: 1.8V fixed output version of MPM3807C

PACKAGE REFERENCE

QFN-15 (3mmx4mmx1.6mm)
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FB</td>
<td>Feedback pin. For the adjustable output version, the output voltage (V\text{OUT}) is set by an external resistor divider from the output to GND, tapped to the FB pin. To set the regulation voltage, V\text{FB} is compared to the internal V\text{REF} (about 0.6V). For the fixed output version, float this pin.</td>
</tr>
<tr>
<td>2</td>
<td>PG</td>
<td>Power good indicator. The output of the PG pin is an open drain. Connect PG to a voltage source using an external resistor. PG is pulled high when V\text{FB} exceeds 90% of V\text{REF}; PG is pulled low to GND if V\text{FB} drops below 85% of V\text{REF}. Float this pin if it is not used.</td>
</tr>
<tr>
<td>3</td>
<td>VIN</td>
<td>Input supply. The MPM3807C operates from a 2.5V to 5.5V input. Connect a decoupling capacitor to the VIN pin to prevent large voltage spikes from appearing at the input.</td>
</tr>
<tr>
<td>4, 5, 6</td>
<td>SW</td>
<td>Switch output. The SW pin is the drain of the internal, high-side P-channel MOSFET. SW is internally connected to the power inductor.</td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>OUT</td>
<td>Power output. Connect the load to the OUT pin. Use an output capacitor to reduce the voltage ripple.</td>
</tr>
<tr>
<td>10, 11</td>
<td>GND</td>
<td>IC ground. Connect the GND pin to the negative terminals of the input and output capacitors with a large copper area. In addition, use several vias to connect to the GND plane.</td>
</tr>
<tr>
<td>12</td>
<td>EN</td>
<td>Enable. Pull the EN pin below the falling threshold (0.65V) to shut down the chip. Pull EN above the rising threshold (0.9V) to enable the chip. There is an internal 2MΩ resistor connected from EN to ground.</td>
</tr>
<tr>
<td>13</td>
<td>SS</td>
<td>Soft start. Connect a capacitor from the SS pin to GND to set the soft-start time and avoid an inrush current at start-up. The minimum recommended soft-start capacitance (C\text{SS}) is 1nF.</td>
</tr>
<tr>
<td>14</td>
<td>OUT_S</td>
<td>Output sense. OUT_S is the sense pin for V\text{OUT} and the discharge path to a 150Ω resistor load.</td>
</tr>
<tr>
<td>15</td>
<td>DNC</td>
<td>Do not connect. The DNC pad is internally connected to the SW pin. Do not route or place vias under this area.</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

All pins: -0.3V to +6.5V
Continuous power dissipation (T\text{A} = 25°C): 2.4W
Operating junction temperature: -150°C to +260°C
Lead temperature: -260°C to +350°C
Storage temperature: -65°C to +150°C

Electrostatic Discharge (ESD) Rating

Human body model (HBM) Class 2
Charged device model (CDM) Class 2b

Recommended Operating Conditions

Input voltage (V\text{IN}): 2.5V to 5.5V
Output voltage (V\text{OUT}): 0.6V to VIN - 0.5V
Load current range: 0A to 2A
Operating junction temp (T\text{j}): -40°C to +150°C

Thermal Resistance

<table>
<thead>
<tr>
<th>Component</th>
<th>θ\text{JA}</th>
<th>θ\text{JC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JESD51-7</td>
<td>65...14...°C/W</td>
<td></td>
</tr>
<tr>
<td>EVM3807C-LE-00A</td>
<td>53...10...°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

3) Exceeding these ratings may damage the device.
4) The maximum allowable power dissipation is a function of the maximum junction temperature, T\text{j} (MAX), the junction-to-ambient thermal resistance, θ\text{JA}, and the ambient temperature T\text{A}. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P\text{D} (MAX) = (T\text{j} (MAX) - T\text{A}) / θ\text{JA}. Exceeding the maximum allowable power dissipation can cause excessive die temperature, and the regulator may go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
5) Per AEC-Q100-002
6) Per AEC-Q100-011
7) Measured on JESD51-7, 4-layer PCB. The values given in this table are only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application, the value of θ\text{JC} shows the thermal resistance from junction-to-case bottom.
8) Measured on MPS's MPM3807C standard EVB, 6.3cmx6.3cm, 4-layer, 2oz cooper PCB. The value of θ\text{JC} shows the thermal resistance from junction-to-case top.
ELECTRICAL CHARACTERISTICS

$V_{IN} = 3.6V$, $T_J = -40°C$ to $+150°C$, typical values are at $T_J = 25°C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under-voltage lockout (UVLO) rising threshold</td>
<td>V_{UVLO_RISING}</td>
<td></td>
<td>2.3</td>
<td>2.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IN} UVLO falling threshold</td>
<td>$V_{UVLO_FALLING}$</td>
<td></td>
<td>2.1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} UVLO hysteresis</td>
<td>V_{UVLO_HYS}</td>
<td></td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} quiescent current</td>
<td>I_Q</td>
<td>$V_{EN} = 2V$, $V_{FB} = 0.63V$, $V_{IN} = 3.6V$, $T_J = 25°C$</td>
<td>460</td>
<td>650</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_{IN} shutdown current</td>
<td>I_{SHDN}</td>
<td>$V_{EN} = 0V$, $T_J = 25°C$</td>
<td>0.01</td>
<td>1</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = 0V$, $T_J = -40°C$ to $+125°C$ (9)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = 0V$, $T_J = -40°C$ to $+150°C$</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} over-voltage protection (OVP) rising threshold</td>
<td>$V_{IN_OVP_RISING}$</td>
<td>After V_{OUT} OVP is enabled</td>
<td>6.15</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} OVP falling threshold</td>
<td>$V_{IN_OVP_FALLING}$</td>
<td></td>
<td>5.95</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IN} OVP hysteresis</td>
<td>$V_{IN_OVP_HYS}$</td>
<td></td>
<td>0.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency, Switches and Inductor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_{SW}</td>
<td></td>
<td>2000</td>
<td>2400</td>
<td>2640</td>
<td>kHz</td>
</tr>
<tr>
<td>Minimum on time (9)</td>
<td>t_{ON_MIN}</td>
<td>$V_{IN} = 5V$</td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum off time (9)</td>
<td>t_{OFF_MIN}</td>
<td>$V_{IN} = 5V$</td>
<td>80</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum duty cycle</td>
<td>D_{MAX}</td>
<td></td>
<td>100</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch leakage current</td>
<td>I_{SW_LKG}</td>
<td>$V_{EN} = 0V$, $V_{IN} = 6V$, $V_{SW} = 0V$ or 6V, $T_J = 25°C$</td>
<td>30</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{EN} = 0V$, $V_{IN} = 6V$, $V_{SW} = 0V$ or 6V, $T_J = -40°C$ to $+125°C$ (9)</td>
<td>0.0</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>High-side (HS) switch on resistance</td>
<td>R_{ON_HS}</td>
<td>$V_{IN} = 5V$</td>
<td>70</td>
<td>100</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Low-side (LS) switch on resistance</td>
<td>R_{ON_LS}</td>
<td>$V_{IN} = 5V$</td>
<td>40</td>
<td>60</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Integrated inductor value (9)</td>
<td>L</td>
<td></td>
<td>376</td>
<td>470</td>
<td>564</td>
<td>nH</td>
</tr>
<tr>
<td>Integrated inductor DC resistance</td>
<td>R_L</td>
<td></td>
<td>25</td>
<td>65</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>Integrated inductor saturation current (9)</td>
<td>I_{L_SAT}</td>
<td></td>
<td>4.8</td>
<td>5.4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Output and Regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB voltage (adjustable output version)</td>
<td>V_{FB}</td>
<td>$T_J = 25°C$</td>
<td>0.594</td>
<td>0.6</td>
<td>0.606</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = -40°C$ to $+150°C$</td>
<td>0.591</td>
<td>0.6</td>
<td>0.609</td>
<td>V</td>
</tr>
<tr>
<td>Output regulation voltage (fixed output version)</td>
<td>V_{OUT_REG}</td>
<td></td>
<td>1.2V fixed output</td>
<td>1.176</td>
<td>1.2</td>
<td>1.224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8V fixed output</td>
<td>1.764</td>
<td>1.8</td>
<td>1.836</td>
<td>V</td>
</tr>
<tr>
<td>FB input current</td>
<td>I_{FB}</td>
<td>Adjustable output version</td>
<td>50</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2V fixed output</td>
<td>3</td>
<td>8</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8V fixed output</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OUT} discharge resistance</td>
<td>R_{DIS}</td>
<td>$V_{EN} = 0V$, $V_{OUT} = 1.2V$</td>
<td>150</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (continued)

$V_{\text{IN}} = 3.6\,\text{V}, T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, typical values are at $T_J = 25^\circ\text{C}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN rising threshold</td>
<td>$V_{\text{EN_RISING}}$</td>
<td></td>
<td>0.9</td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN falling threshold</td>
<td>$V_{\text{EN_FALLING}}$</td>
<td></td>
<td>0.4</td>
<td>0.65</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN threshold hysteresis</td>
<td>$V_{\text{EN_HYS}}$</td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>EN turn on delay</td>
<td>$V_{\text{EN_TURN_ON_DELAY}}$</td>
<td>EN high to SW active</td>
<td>100</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>EN turn off delay</td>
<td>$V_{\text{EN_TURN_OFF_DELAY}}$</td>
<td>EN low to stop switching</td>
<td>30</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>EN pull down resistor</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>EN input current</td>
<td>I_{EN}</td>
<td>$V_{\text{EN}} = 2,\text{V}$</td>
<td>1.2</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{EN}} = 0,\text{V}$</td>
<td>0</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Soft Start</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-start current</td>
<td>I_{ISS}</td>
<td></td>
<td>1.5</td>
<td>3</td>
<td>4.5</td>
<td>µA</td>
</tr>
<tr>
<td>PG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG rising threshold</td>
<td>$V_{\text{PG_RISING}}$</td>
<td>$V_{\text{IN}} = 5,\text{V}$, $V_{\text{FB}} = 0.6,\text{V}$</td>
<td>87%</td>
<td>90%</td>
<td>93%</td>
<td>V_{FB}</td>
</tr>
<tr>
<td>PG falling threshold</td>
<td>$V_{\text{PG_FALLING}}$</td>
<td>$V_{\text{IN}} = 5,\text{V}$, $V_{\text{FB}} = 0.6,\text{V}$</td>
<td>82%</td>
<td>85%</td>
<td>88%</td>
<td>V_{FB}</td>
</tr>
<tr>
<td>PG logic high voltage</td>
<td>$V_{\text{PG_HIGH}}$</td>
<td>$V_{\text{IN}} = 5,\text{V}$, $V_{\text{FB}} = 0.6,\text{V}$</td>
<td>4.9</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PG sink current capability</td>
<td>$V_{\text{PG_LOW}}$</td>
<td>Sink 1mA</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>PG rising deglitch</td>
<td>$t_{\text{PGOOD_R}}$</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>PG falling deglitch</td>
<td>$t_{\text{PGOOD_F}}$</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>PG leakage current (high)</td>
<td>$V_{\text{PG_LEAKAGE_CURRENT_HIGH}}$</td>
<td>5V logic high</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>PG self-bias</td>
<td>$V_{\text{IN}} = 0,\text{V}$, $V_{\text{EN}} = 0,\text{V}$, PG is pulled up between 3V and 5.5V via a 100kΩ resistor</td>
<td>0.7</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Protections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS peak current limit</td>
<td>$I_{\text{LIMIT_HS}}$</td>
<td></td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
<td>A</td>
</tr>
<tr>
<td>LS valley current limit</td>
<td>$I_{\text{LIMIT_LS}}$</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>LS reverse current limit</td>
<td>$I_{\text{LIMIT_REVERSE}}$</td>
<td>Current flows from SW to GND</td>
<td>1.2</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Thermal shutdown (9)</td>
<td>T_{SD}</td>
<td></td>
<td>170</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal shutdown hysteresis (9)</td>
<td>$T_{\text{SD_HYS}}$</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Output over voltage threshold</td>
<td>V_{OVP}</td>
<td></td>
<td>110%</td>
<td>115%</td>
<td>120%</td>
<td>V_{FB}</td>
</tr>
<tr>
<td>Output OVP hysteresis</td>
<td>$V_{\text{OVP_HYS}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVP delay</td>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td></td>
<td>V_{FB}</td>
</tr>
</tbody>
</table>

Note:

9) Not tested in production. Guaranteed by design and characterization.
TYPICAL CHARACTERISTICS

$V_{\text{IN}} = 3.6\text{V}, T_J = -40^\circ\text{C} \text{ to } +150^\circ\text{C},$ unless otherwise noted.
TYPICAL CHARACTERISTICS (continued)

$V_{IN} = 3.6\text{V}, T_J = -40^\circ\text{C}$ to $+150^\circ\text{C}$, unless otherwise noted.

- **$R_{ON_{HS}}$ vs. Temperature**
- **$R_{ON_{LS}}$ vs. Temperature**
- **Valley Current Limit vs. Temperature**
- **Peak Current Limit vs. Temperature**
- **Reverse Current Limit vs. Temperature**
- **PG Rising/Falling Threshold vs. Temperature**

$R_{ON_{HS}}$ vs. Temperature

$R_{ON_{LS}}$ vs. Temperature

Valley Current Limit vs. Temperature

Peak Current Limit vs. Temperature

Reverse Current Limit vs. Temperature

PG Rising/Falling Threshold vs. Temperature
TYPICAL CHARACTERISTICS (continued)

$V_{IN} = 3.6V$, $T_J = -40°C$ to $+150°C$, unless otherwise noted.

Soft-Start Current vs. Temperature

![Graph](image-url)
TYPICAL PERFORMANCE CHARACTERISTICS

\[V_{\text{IN}} = 3.3\, \text{V}, V_{\text{OUT}} = 1.2\, \text{V}, C_{\text{OUT}} = 22\, \mu\text{F}, T_{\text{A}} = 25^\circ\text{C}, \text{unless otherwise noted.} \]

![Efficiency vs. Load Current](image1)

![Power Loss vs. Load Current](image2)

![Efficiency vs. Load Current](image3)

![Power Loss vs. Load Current](image4)

![Case Temperature Rise vs. Load Current](image5)

![Case Temperature Rise vs. Load Current](image6)
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 3.3\text{V}$, $V_{OUT} = 1.2\text{V}$, $C_{OUT} = 22\mu\text{F}$, $T_{A} = 25^\circ\text{C}$, unless otherwise noted.

Load Regulation vs. Load Current

$V_{OUT} = 1.2\text{V}$

Line Regulation vs. Input Voltage

$V_{OUT} = 1.2\text{V}$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 3.3\,V$, $V_{OUT} = 1.2\,V$, $C_{OUT} = 22\mu F$, $T_A = 25^\circ C$, unless otherwise noted.

Steady State

$I_{OUT} = 0A$

Start-Up through VIN

$I_{OUT} = 0A$

Shutdown through VIN

$I_{OUT} = 0A$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 3.3\text{V}, V_{OUT} = 1.2\text{V}, C_{OUT} = 22\mu\text{F}, T_A = 25^\circ\text{C}$, unless otherwise noted.

Start-Up through EN

$I_{OUT} = 0\text{A}$

Shutdown through EN

$I_{OUT} = 0\text{A}$

SCP Entry

$I_{OUT} = 0\text{A}$

$\text{CH3: } V_{EN}$
$\text{CH2: } V_{OUT}$
$\text{CH4: } I_L$
$\text{CH1: } V_{SW}$

$I_{OUT} = 2\text{A}$

$\text{CH3: } V_{EN}$
$\text{CH2: } V_{OUT}$
$\text{CH4: } I_L$
$\text{CH1: } V_{SW}$

SCP Entry

$I_{OUT} = 2\text{A}$

$\text{CH3: } V_{PG}$
$\text{CH2: } V_{OUT}$
$\text{CH4: } I_L$
$\text{CH1: } V_{SW}$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 3.3\text{V}, \ V_{OUT} = 1.2\text{V}, \ C_{OUT} = 22\mu\text{F}, \ T_{A} = 25^\circ\text{C}$, unless otherwise noted.

SCP Recovery

$I_{OUT} = 0\text{A}$

SCP Recovery

$I_{OUT} = 2\text{A}$

Short-Circuit Protection

$I_{OUT} = 0\text{A}$

PG Start-Up through VIN

$I_{OUT} = 2\text{A}$

PG Shutdown through VIN

$I_{OUT} = 2\text{A}$

PG Start-Up through EN

$I_{OUT} = 2\text{A}$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$V_{IN} = 3.3\,V$, $V_{OUT} = 1.2\,V$, $C_{OUT} = 22\mu F$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

PG Shutdown through EN

$I_{OUT} = 2A$

Load Transient Response

$I_{OUT} = 0A$ to $1A$, $1A/\mu s$

Load Transient Response

$I_{OUT} = 1$ to $2A$, $1A/\mu s$
FUNCTIONAL BLOCK DIAGRAM

Figure 3: Functional Block Diagram (Adjustable Output Version)

Figure 4: Functional Block Diagram (Fixed Output Version)
OPERATION

The MPM3807C employs input voltage (V_in) feed-forward and constant-on-time (COT) control to stabilize the switching frequency (f_sw) across the entire V_in range. The device can achieve 2A of output current (I_out) across a 2.5V to 5.5V V_in range, with excellent load and line regulation. The output voltage (V_out) can be regulated to as low as 0.6V. A 100% maximum duty cycle can be reached in low-dropout mode.

Constant-On-Time (COT) Control and Forced Continuous Conduction Mode (FCCM)

COT control provides a simpler control loop and faster transient response. The MPM3807C’s switching cycles have a fixed minimum off time (t_off_min) to prevent inductor current (I_L) runaway during load transients. If the low-side MOSFET (LS-FET) turns on, it remains on for at least t_off_min (typically 80ns). The high-side MOSFET (HS-FET) turns on once the feedback (FB) voltage (V_FB) drops below the reference voltage (V_REF). This indicates an insufficient V_out.

Input voltage feed-forward allows the device to maintain a nearly constant f_sw across the input range and load range. The f_sw on time (t_on) can be calculated with Equation (1):

\[
t_{\text{ON}} = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times 400\,\text{ns}
\]

To improve frequency stability and reduce the output voltage ripple, the MPM3807C operates in forced continuous conduction mode (FCCM) (see Figure 5). FCCM has a constant f_sw.

Enable (EN) Control

The enable (EN) pin is a digital control pin that turns the MPM3807C on and off. Pull EN above 0.9V to turn the converter on; pull EN below 0.65V or float EN to turn it off. Pulling EN to GND also disables the device. There is an internal 2MΩ resistor connected between EN and GND.

Output Discharge

If the MPM3807C shuts down, the device initiates output discharge mode. The internal discharge MOSFET provides a resistive discharge path for the output capacitor (C2) between the OUT_S pin and GND. To block the output discharge path, add an external capacitor between V_out and the OUT_S pin (see the Output Discharge Blocking section on page 21).

Soft Start (SS)

The MPM3807C features external soft start. To avoid overshoot during start-up, the SS pin ramps up V_out at a controlled slew rate. The SS pin’s charge current is typically 3μA. The soft-start time (t_SS) is determined by the external soft-start capacitor (C_SS). t_SS can be calculated with Equation (2):

\[
t_{\text{SS}}(\text{ms}) = \frac{C_{\text{SS}}(\text{nF}) \times 0.6\,\text{V}}{I_{\text{SS}}(\mu\text{A})}
\]

Where I_SS is the internal soft-start charge current (3μA). It is recommended that C_SS be at least 1nF.

The MPM3807C has a pre-biased start-up function. Once EN is pulled above 0.9V, the converter starts up, regardless of any pre-biased voltage on the output. Pre-biased start-up works even while the output discharge path is blocked.

Peak Current Limit and Valley Current Limit

Both the HS-FET and LS-FET feature current-limit protection. If I_L reaches the HS-FET’s peak current limit (I_LIMIT_PEAK, typically 3.5A), the HS-FET turns off and the LS-FET turns on to discharge the energy. The HS-FET does not turn on again until I_L drops below the valley current limit (I_LIMIT_VALLEY, typically 2A). This prevents current runaway during overload and short-circuit events. I_LIMIT_VALLEY is blocked unless the HS-FET turns off due to I_LIMIT_PEAK being triggered.
Short-Circuit Protection (SCP) and SCP Recovery
When a short-circuit condition occurs, the MPM3807C reaches its current limit immediately. Meanwhile, V_{OUT} drops until V_{FB} falls below 50% of V_{REF}. The MPM3807C considers this an output dead short and triggers short-circuit protection (SCP) with hiccup mode to periodically restart the part. In hiccup mode, the output power stage is disabled and the SS voltage (V_{SS}) is discharged. Once V_{SS} is discharged completely, the device initiates a new soft start. This process repeats until the fault condition is removed.

Over-Voltage Protection (OVP)
The MPM3807C monitors V_{FB} to detect over-voltage (OV) conditions. If V_{FB} exceeds 115% of V_{REF}, then the converter enters its dynamic regulation period. During this period, the LS-FET remains on until the LS-FET current reaches -1.2A. This process discharges V_{OUT} to keep V_{OUT} within its normal range. If the OV condition still remains after this process, there is a 1.5µs delay, and then the LS-FET turns on again.

Once V_{FB} falls below 105% of V_{REF}, the converter exits the regulation period. If the dynamic regulation period cannot prevent V_{OUT} from increasing, and a 6.1V V_{IN} is detected, then OVP is triggered, and the device stops switching until V_{IN} drops below 6V. Once V_{IN} drops below 6V, the MPM3807C resumes normal operation.

Power Good (PG) Indicator
The MPM3807C has a power good (PG) output to indicate whether the converter is operating normally after start-up. PG is the open drain of an internal MOSFET. It is recommended that this MOSFET’s maximum on resistance ($R_{DS(ON)}$) be below 400Ω. PG can be connected to V_{IN} or an external voltage source via an external resistor (10kΩ to 100kΩ). Once V_{IN} is applied, the MOSFET turns on, and PG is pulled to GND before soft start is ready.

After V_{FB} reaches 90% of V_{REF}, PG is pulled high by the external voltage source. If V_{FB} drops to 85% of V_{REF}, then the PG voltage (V_{PG}) is pulled to GND to indicate an output failure.

If V_{IN} and EN are not available, and PG is pulled up via an external power supply, then the PG pin self-biases and asserts. If a 100kΩ pull-up resistor is being used, then V_{PG} should be below 0.7V.
APPLICATION INFORMATION

Setting the Output Voltage

The external resistor divider sets the MPM3807C's adjustable output voltage (V_{OUT}). V_{OUT} can be set from 0.6V to (V_{IN} - 0.5V). Select a feedback (FB) resistor (R_4, typically between 10kΩ and 100kΩ) to reduce the V_{OUT} leakage current. Then R_5 can be calculated with Equation (3):

$$R_5 = \frac{R_4}{V_{OUT} - 0.6}$$ \hspace{1cm} (3)

Figure 6 shows the FB network.

![Figure 6: Feedback Network](image)

Table 1 shows the recommended resistor values for common output voltages.

<table>
<thead>
<tr>
<th>V_{OUT} (V)</th>
<th>R_4 (kΩ)</th>
<th>R_5 (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.9 (1%)</td>
<td>47 (1%)</td>
</tr>
<tr>
<td>1.2</td>
<td>100 (1%)</td>
<td>100 (1%)</td>
</tr>
<tr>
<td>1.8</td>
<td>36 (1%)</td>
<td>18 (1%)</td>
</tr>
<tr>
<td>2.5</td>
<td>51 (1%)</td>
<td>16 (1%)</td>
</tr>
<tr>
<td>3.3</td>
<td>68 (1%)</td>
<td>15 (1%)</td>
</tr>
</tbody>
</table>

For the fixed output version of the MPM3807C, an external resistor divider is not required. In this scenario, the FB pin can be floated.

Frequency Scaling at Low Input Voltages

Under heavy-load conditions, the HS-FET voltage decreases as t_{ON} increases and the duty cycle is extended. If t_{OFF_MIN} is reached at a low V_{IN} and under heavy-load conditions, then f_{SW} scales down. To maintain a constant f_{SW} during heavy-load operation, a larger V_{OUT} is required for a larger V_{IN}. For a 1.8V V_{OUT} at a 2A load, V_{IN} should be above 2.9V to keep f_{SW} above 2MHz. If the frequency begins to scale down, V_{IN} can be estimated with Equation (4):

$$V_{IN} = \frac{V_{OUT} + R_{ON_HS} \times I_{OUT}}{1 - \frac{t_{OFF_MIN}}{400 \times 10^{-9}}}$$ \hspace{1cm} (4)

Where the maximum t_{OFF_MIN} is 125ns. (10)

Note:

10) Guaranteed by design and bench characterization. Not tested in production.

Selecting the Input Capacitor

The step-down converter has a discontinuous input current (I_{IN}), and requires a capacitor to supply AC current to the converter while maintaining the DC input voltage. For the best performance, it is recommended to use low-ESR capacitors. Ceramic capacitors with X5R or X7R dielectrics are strongly recommended due to their low ESR and small temperature coefficients. For most applications, a 10µF capacitor is sufficient. Higher output voltages may require a 22µF capacitor to increase system stability.

The input capacitor (C_1) requires an adequate ripple current rating to absorb the switching I_{IN}. C_1's RMS current rating (I_{C1}) can be estimated with Equation (5):

$$I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$ \hspace{1cm} (5)

The worst-case scenario occurs at $V_{IN} = 2 \times V_{OUT}$, which can be calculated with Equation (6):

$$I_{C1} = \frac{I_{LOAD}}{2}$$ \hspace{1cm} (6)

For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

$C1$ can be an electrolytic, tantalum, or ceramic capacitor. When using electrolytic or tantalum capacitors, place a small, high-quality, 0.1µF ceramic capacitor as close to the IC as possible. When using ceramic capacitors, ensure that the capacitor has enough capacitance to prevent an excessive voltage ripple at the input. The input voltage ripple (ΔV_{IN}) can be estimated with Equation (7):

$$V_{IN} = \frac{V_{OUT} + R_{ON_HS} \times I_{OUT}}{1 - \frac{t_{OFF_MIN}}{400 \times 10^{-9}}}$$ \hspace{1cm} (4)
Selecting the Output Capacitor

The output capacitor (C2) stabilizes the DC \(V_{\text{OUT}} \). It is recommended to use ceramic capacitors for C2. Low-ESR capacitors are recommended, as they effectively limit the output voltage ripple (\(\Delta V_{\text{OUT}} \)). \(\Delta V_{\text{OUT}} \) can be estimated with Equation (8):

\[
\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_1} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right) \left(R_{\text{ESR}} + \frac{1}{8 \times f_{\text{SW}} \times C2} \right)
\]

(8)

Where \(L_1 \) is the inductance, and \(R_{\text{ESR}} \) is C2’s equivalent series resistance (ESR).

When using ceramic capacitors, the capacitance dominates the impedance at the switching frequency and causes the majority of \(\Delta V_{\text{OUT}} \).

For simplification, \(\Delta V_{\text{OUT}} \) can be estimated with Equation (9):

\[
\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{8 \times f_{\text{SW}}^2 \times L_1 \times C2} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right)
\]

(9)

Ceramic capacitors with X7R or X5R dielectrics are highly recommended due to their low ESR and small temperature coefficients.

For tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, \(\Delta V_{\text{OUT}} \) can be estimated with Equation (10):

\[
\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_1} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right) \times R_{\text{ESR}}
\]

(10)

C2’s characteristics can also affect the stability of the regulation system.

Output Discharge Blocking

If the device is disabled, an internal resistive discharge path between the OUT_S pin and GND is enabled to discharge C2. The discharge path can be blocked by adding an external capacitor between \(V_{\text{OUT}} \) and the OUT_S pin (see Figure 7).

Figure 7: Circuit with \(V_{\text{OUT}} \) Discharge Blocking

This function is only supported by the adjustable output version. For fixed output versions, the OUT_S pin must be connected directly to \(V_{\text{OUT}} \) to regulate the output voltage.

To avoid influencing the loop and load transient response, select a \(\geq 10 \text{nF} \) blocking capacitor. It is recommended to use a \(10 \text{nF} \) to \(100 \text{nF} \) blocking capacitor. A larger-value blocking capacitor does not have an impact on loop performance, but a larger-value capacitor is physically larger and is typically unnecessary to achieve the best possible results.
PCB Layout Guidelines

Using a power module with an integrated inductor simplifies the PCB layout design, but some considerations should be taken to ensure proper operation. A 4-layer layout is recommended to improve EMC and thermal performance (although the device can operate sufficiently with a 2-layer PCB). For the best results, refer to Figure 8 and follow the guidelines below:

1. Place the high-current paths (GND and VIN) very close to the device with short, direct, and wide traces.
2. Use large copper areas to minimize conduction loss and thermal stress.
3. Place the ceramic input capacitors as close to the VIN pin as possible.
4. Place several vias close to the GND terminal of the capacitor, and close to the GND pin on the IC, to minimize high-frequency noise.
5. Place the feedback resistors as close as possible to the FB pin to ensure that the trace that connects to the FB pin is as short as possible.
6. Use multiple vias to connect the power planes to the internal layer.

Note:
11) The recommended PCB layout is based on Figure 9.
TYPICAL APPLICATION CIRCUITS

Figure 9: Typical Application Circuit (Adjustable Output Version, $V_{OUT} = 1.2V$)

Figure 10: Typical Application Circuit (Adjustable Output Version, $V_{OUT} = 1.8V$)
TYPICAL APPLICATION CIRCUITS (continued)

Figure 11: Typical Application Circuit (Fixed Output Version, \(V_{OUT} = 1.2 \) V)

Figure 12: Typical Application Circuit (Fixed Output Version, \(V_{OUT} = 1.8 \) V)
PACKAGE INFORMATION

QFN-15 (3mmx4mmx1.6mm)
Wettable Flank

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) SHADED AREA IS THE KEEP-OUT ZONE. ANY PCB METAL TRACE AND VIA ARE NOT ALLOWED TO CONNECT TO THIS AREA ELECTRICALLY OR MECHANICALLY.
3) THE LEAD SIDE IS WETTABLE.
4) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
5) JEDEC REFERENCE IS MO-220.
6) DRAWING IS NOT TO SCALE.
CARRIER INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Description</th>
<th>Quantity/Reel</th>
<th>Quantity/Tube</th>
<th>Quantity/Tray</th>
<th>Reel Diameter</th>
<th>Carrier Tape Width</th>
<th>Carrier Tape Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM3807CGLE-12-AEC1-Z</td>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td>2500</td>
<td>N/A</td>
<td>N/A</td>
<td>13in</td>
<td>12mm</td>
<td>8mm</td>
</tr>
<tr>
<td>MPM3807CGLE-18-AEC1-Z</td>
<td>QFN-15 (3mmx4mmx1.6mm)</td>
<td>2500</td>
<td>N/A</td>
<td>N/A</td>
<td>13in</td>
<td>12mm</td>
<td>8mm</td>
</tr>
</tbody>
</table>
REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision #</th>
<th>Revision Date</th>
<th>Description</th>
<th>Pages Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>10/18/2022</td>
<td>Initial Release</td>
<td></td>
</tr>
</tbody>
</table>

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.