DESCRIPTION
The MP8104 is a rail-to-rail output, operational amplifier in a TSOT-23 package with Industry standard pin-out. This amplifier provides 400KHz bandwidth while consuming an incredibly low 11µA of supply current. The MP8104 can operate with a single supply voltage as low as 1.8V.

FEATURES
- Single Supply Operation: 1.8V to 5.5V
- TSOT23-5 Package
- 400KHz Gain Bandwidth
- 11µA Supply Current
- Rail-to-Rail Output
- Unity-Gain Stable
- Input Common Mode to Ground
- Drives Up to 1000pF of Capacitive Loads

APPLICATIONS
- Portable Equipment
- PDAs
- Pagers
- Cordless Phones
- Handheld GPS
- Consumer Electronics

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION
PART NUMBER

MP8104DJ TSOT23-5 –40°C to +85°C

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage (V+ to V-) +6.0V
Differential Input Voltage (V_{IN+} – V_{IN-}) +6.0V
Input Voltage (V_{IN+} – V_{IN-}) .. V_{IN+} + 0.3V, V_{IN-} – 0.3V

Recommended Operating Conditions (2)
Supplied Voltage+1.8V to +5.5V
Operating Temperature–40°C to +85°C

Thermal Resistance (3) \(\theta_{JA} \) \(\theta_{JC} \)
TSOT23-5 ... 220 110 .. °C/W

Notes:
1) Exceeding these ratings may damage the device.
2) The device is not guaranteed to function outside of its operating conditions.
3) Measured on approximately 1” square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

V+ = +5V, V- = 0V, V_CM = V+/2, \(R_L = 10k\Omega \), \(T_A = +25°C \), unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>V_{OS}</td>
<td></td>
<td>–5</td>
<td>1</td>
<td>+5</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Voltage Temp Coefficient</td>
<td>I_{B}</td>
<td></td>
<td>15</td>
<td>µV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current (4)</td>
<td>I_{B}</td>
<td></td>
<td>2</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current (4)</td>
<td>I_{OS}</td>
<td></td>
<td>0.2</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V_{CM}</td>
<td>CMRR > 60dB</td>
<td>0</td>
<td>3.8</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>0 < V_{CM} < 3.5V</td>
<td>82</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>Supply Voltage change</td>
<td>80</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>A_{VOL}</td>
<td>(R_L = 100k\Omega) V_{OUT} = 5.0 Peak to Peak</td>
<td>60</td>
<td>88</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>V_{OUT}</td>
<td>(R_L = 10k\Omega)</td>
<td>(V+) – 23mV</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Output Voltage Swing</td>
<td>V_{OUT}</td>
<td>(R_L = 10k\Omega)</td>
<td>(V–) + 19mV</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain-Bandwidth Product (4)</td>
<td>GBW</td>
<td>(R_L = 200k\Omega, C_L = 2pF, V_{OUT} = 0)</td>
<td>400</td>
<td>KHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–3dB Bandwidth (4)</td>
<td>BW</td>
<td>(A_v = 1, C_L = 2pF, R_L = 1M\Omega)</td>
<td>1</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate (4)</td>
<td>SR</td>
<td>(A_v = 1, C_L = 2pF, R_L = 1M\Omega)</td>
<td>0.2</td>
<td>V/µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{SC}</td>
<td>Source</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sink</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td></td>
<td>No Load</td>
<td>11</td>
<td>20</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Note:
4) Guaranteed by design.
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>Output.</td>
</tr>
<tr>
<td>2</td>
<td>V-</td>
<td>Ground or Supply Return Pin.</td>
</tr>
<tr>
<td>3</td>
<td>IN+</td>
<td>Non-Inverting Input.</td>
</tr>
<tr>
<td>4</td>
<td>IN-</td>
<td>Inverting Input.</td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>Supply Voltage.</td>
</tr>
</tbody>
</table>

TEST CIRCUITS

Figure 1—AC Test Circuit

Notes: Close S3 for positive gain. Input signal to RF(+Av) connector.
The gain $Av = 1 + \frac{RFB}{RIN}$.
For unity gain, remove RIN and short RFB.
Open S3 for negative gain. Input signal to RF(-Av) connector.
The gain $Av = -\frac{RFB}{RIN}$.
S1 and S2 are switches for possible resistor and capacitor load connections.
TEST CIRCUITS (continued)

Figure 2—Positive Power Supply Rejection Ratio Measurement
TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = +25^\circ C$, unless otherwise noted.

Short Circuit Current vs Supply Voltage

- **Sourcing**

![Graph showing short circuit current sourcing](image1)

- **Sinking**

![Graph showing short circuit current sinking](image2)

Offset Voltage vs. Common Mode Voltage

- $R_{FB} = 50k\Omega$, $V_\text{in} = -5V$ to $0V$, $V_\text{in} = 0V$ to $+5V$

![Graph showing offset voltage vs. common mode voltage](image3)

Offset Voltage vs. Supply Voltage

- $R_{FB} = 50k\Omega$, $V_\text{in} = -2.5V$ to $0V$, $V_\text{in} = +2.5V$ to $0V$

![Graph showing offset voltage vs. supply voltage](image4)

Output Noise vs. Frequency

![Graph showing output noise vs. frequency](image5)
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$T_A = +25^\circ\text{C}$, unless otherwise noted.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

T_A = +25°C, unless otherwise noted.

Small Signal Pulse Response

\[\text{Input: 50mV/div.} \]
\[\text{Output: 50mV/div.} \]

\[10\mu\text{s/div.} \]

- \(A_v = 1, V^+ = 2.5V, V^- = -2.5V \)
- \(R_L = 1\Omega, C_L = 8\text{pF} \)

Small Signal Pulse Response

\[\text{Input: 50mV/div.} \]
\[\text{Output: 50mV/div.} \]

\[10\mu\text{s/div.} \]

- \(A_v = 1, V^+ = 1.3V, V^- = -1.3V \)
- \(R_L = 1\Omega, C_L = 8\text{pF} \)
- \(R_L = 1\Omega, C_L = 47\text{pF} \)

Small Signal Pulse Response

\[\text{Input: 50mV/div.} \]
\[\text{Output: 200mV/div.} \]

\[10\mu\text{s/div.} \]

- \(A_v = -1, V^+ = 1.3V, V^- = -1.3V \)
- \(R_L = 1\Omega, C_L = 8\text{pF} \)

Small Signal Pulse Response

\[\text{Input: 50mV/div.} \]
\[\text{Output: 50mV/div.} \]

\[10\mu\text{s/div.} \]

- \(A_v = -1, V^+ = 2.5V, V^- = -2.5V \)
- \(R_L = 4.7\Omega, C_L = 8\text{pF} \)
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

\(T_A = +25^\circ C\), unless otherwise noted.

Large Signal Pulse Response
- \(A_v = 1, V^+ = 2.5V, V^- = -2.5V\)
- \(R_L = 1M\Omega, C_L = 8\text{pF}\)

Large Signal Pulse Response
- \(A_v = 1, V^+ = 1.3V, V^- = -1.3V\)
- \(R_L = 1M\Omega, C_L = 8\text{pF}\)

Rail to Rail Output Operation
- \(A_v = -2, V^+ = 2.5V, V^- = -2.5V\)
- \(R_L = 1M\Omega, C_L = 50\text{pF}\)

Rail to Rail Output Operation
- \(A_v = 2, V^+ = 1.3V, V^- = -1.3V\)
- \(R_L = 1M\Omega, C_L = 8\text{pF}\)
APPLICATION INFORMATION

Power Supply Bypassing
Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies is ideal. For the best performance, all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (Equivalent Series Inductance) and low ESR (Equivalent Series Resistance). Surface mount ceramic capacitors are ideal.

TYPICAL APPLICATION CIRCUIT

Notes:
1) The control voltage V_{IN} is wide, $0 < V_{IN} < V_{CC} - 1V$
2) The switch frequency can be changed by adjusting R and C.

Figure 3—Voltage Controlled Frequency Circuit
PACKAGE INFORMATION

TSOT23-5

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION AA.
6) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.