DESCRIPTION
The MP8104 is a rail-to-rail output, operational amplifier in a TSOT-23 package with Industry standard pin-out. This amplifier provides 400KHz bandwidth while consuming an incredibly low 11µA of supply current. The MP8104 can operate with a single supply voltage as low as 1.8V.

FEATURES
- Single Supply Operation: 1.8V to 5.5V
- TSOT23-5 Package
- 400KHz Gain Bandwidth
- 11µA Supply Current
- Rail-to-Rail Output
- Unity-Gain Stable
- Input Common Mode to Ground
- Drives Up to 1000pF of Capacitive Loads

APPLICATIONS
- Portable Equipment
- PDAs
- Pagers
- Cordless Phones
- Handheld GPS
- Consumer Electronics

MPS and “The Future of Analog IC Technology” are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

```
V+ = 1.8V-5.5V
VOUT
```

\[V_{IN} \]

\[V+ \]

\[1\mu F \]

\[10k\Omega \]

\[10k\Omega \]

\[0.1\mu F \]

\[10k\Omega \]

\[0.1\mu F \]
MP8104 – ULTRA LOW POWER, 1.8V, 400KHz OP AMP WITH INDUSTRY STANDARD PIN-OUT

PACKAGE REFERENCE

<table>
<thead>
<tr>
<th>TOP VIEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT 1</td>
</tr>
<tr>
<td>V+ 5</td>
</tr>
<tr>
<td>V- 2</td>
</tr>
<tr>
<td>IN+ 3</td>
</tr>
<tr>
<td>IN- 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP8104DJ</td>
<td>TSOT23-5</td>
<td>–40°C to +85°C</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (eg. MP8104DJ–Z)
 For Lead Free, add suffix –LF (eg. MP8104DJ–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)
Supply Voltage (V+ to V-) +6.0V
Differential Input Voltage (V(IN+) – V(IN–)) +6.0V
Input Voltage (V(IN+) + 0.3V, V(IN–) – 0.3V

Recommended Operating Conditions (2)
Supply Voltage+1.8V to +5.5V
Operating Temperature−40°C to +85°C

Thermal Resistance (3) \(\theta_{JA} \) \(\theta_{JC} \)
TSOT23-5 ..220 110.. °C/W

Notes:
1) Exceeding these ratings may damage the device.
2) The device is not guaranteed to function outside of its operating conditions.
3) Measured on approximately 1” square of 1 oz copper.

ELECTRICAL CHARACTERISTICS
V+ = +5V, V- = 0V, V CM = V+/2, RL = 10kΩ, TA = +25°C, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>V OS</td>
<td></td>
<td>–5</td>
<td>1</td>
<td>+5</td>
<td>mV</td>
</tr>
<tr>
<td>Input Offset Voltage Temp Coefficient</td>
<td>I B</td>
<td></td>
<td>2</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current (4)</td>
<td>I OS</td>
<td></td>
<td>0.2</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>V CM</td>
<td>CMRR > 60dB</td>
<td>0</td>
<td>3.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>CMRR</td>
<td>0 < V CM < 3.5V</td>
<td>82</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>Supply Voltage change of 1.0V</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>A VOL</td>
<td>RL = 100kΩ, V OUT = 5.0 Peak to Peak</td>
<td>60</td>
<td>88</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Maximum Output Voltage Swing</td>
<td>V OUT</td>
<td>RL = 10kΩ</td>
<td>(V+) – 23mV</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Output Voltage Swing</td>
<td>V OUT</td>
<td>RL = 10kΩ</td>
<td>(V–) + 19mV</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain-Bandwidth Product (4)</td>
<td>GBW</td>
<td>RL = 200kΩ, C L = 2pF, V OUT = 0</td>
<td>400</td>
<td></td>
<td></td>
<td>KHz</td>
</tr>
<tr>
<td>–3dB Bandwidth (4)</td>
<td>BW</td>
<td>A v = 1, C L = 2pF, RL = 1MΩ</td>
<td>1</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Slew Rate (4)</td>
<td>SR</td>
<td>A v = 1, C L = 2pF, RL = 1MΩ</td>
<td>0.2</td>
<td>V/µs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I SC</td>
<td>Source</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sink</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td></td>
<td>No Load</td>
<td>11</td>
<td>20</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Note:
4) Guaranteed by design.
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT</td>
<td>Output.</td>
</tr>
<tr>
<td>2</td>
<td>V-</td>
<td>Ground or Supply Return Pin.</td>
</tr>
<tr>
<td>3</td>
<td>IN+</td>
<td>Non-Inverting Input.</td>
</tr>
<tr>
<td>4</td>
<td>IN-</td>
<td>Inverting Input.</td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>Supply Voltage.</td>
</tr>
</tbody>
</table>

TEST CIRCUITS

![AC Test Circuit Diagram]

Notes: Close S3 for positive gain. Input signal to RF(+Av) connector.
The gain $Av = 1 + \frac{R_{FB}}{R_{IN}}$.
For unity gain, remove R_{IN} and short R_{FB}.
Open S3 for negative gain. Input signal to RF(-Av) connector.
The gain $Av = -\frac{R_{FB}}{R_{IN}}$.
S1 and S2 are switches for possible resistor and capacitor load connections.

Figure 1—AC Test Circuit
TEST CIRCUITS (continued)

Figure 2—Positive Power Supply Rejection Ratio Measurement
TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = +25^\circ C$, unless otherwise noted.

Short Circuit Current vs Supply Voltage

- **Sourcing**
 - Output Current (mA) vs. Supply Voltage (V)
 - Graph shows a nonlinear relationship with increasing supply voltage.

- **Sinking**
 - Output Current (mA) vs. Supply Voltage (V)
 - Graph shows a nonlinear relationship with increasing supply voltage.

Offset Voltage vs. Common Mode Voltage

- $R_{FB} = 50k\Omega$, $V_- = -5V$ to 0V, $V_+ = 0V$ to $+5V$
 - Offset Voltage (mV) vs. Common Mode Voltage (V)
 - Graph shows a linear relationship with increasing common mode voltage.

Output Noise vs. Frequency

- Output Noise (nV/\sqrt{Hz}) vs. Frequency (Hz)
 - Graph shows a decrease in noise with increasing frequency.
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$T_A = +25^\circ C$, unless otherwise noted.

Gain Bandwidth and Phase Margin

Close-Loop Unity Gain Frequency Response

PSRR vs. Frequency

CMRR vs. Frequency
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$T_A = +25^\circ C$, unless otherwise noted.

Small Signal Pulse Response

$A_V = 1$, $V^+ = 2.5V$, $V^- = -2.5V$

$R_L = 1\Omega$, $C_L = 8pF$

Small Signal Pulse Response

$A_V = 1$, $V^+ = 1.3V$, $V^- = -1.3V$

$R_L = 1\Omega$, $C_L = 8pF$

Small Signal Pulse Response

$A_V = 1$, $V^+ = 2.5V$, $V^- = -2.5V$

$R_L = 1\Omega$, $C_L = 47pF$

Small Signal Pulse Response

$A_V = 1$, $V^+ = 1.3V$, $V^- = -1.3V$

$R_L = 1\Omega$, $C_L = 47pF$

Small Signal Pulse Response

$A_V = -1$, $V^+ = 2.5V$, $V^- = -2.5V$

$R_L = 4.7k\Omega$, $C_L = 8pF$

Small Signal Pulse Response

$A_V = -1$, $V^+ = 1.3V$, $V^- = -1.3V$

$R_L = 4.7k\Omega$, $C_L = 8pF$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

T_A = +25°C, unless otherwise noted.

Large Signal Pulse Response
A_v = 1, V+ = 2.5V, V- = -2.5V
R_L = 1MΩ, C_L = 8pF

Rail to Rail Output Operation
A_v = -2, V+ = 2.5V, V- = -2.5V
R_L = 1MΩ, C_L = 50pF

Rail to Rail Output Operation
A_v = 2, V+ = 1.3V, V- = -1.3V
R_L = 1MΩ, C_L = 8pF
APPLICATION INFORMATION

Power Supply Bypassing
Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies is ideal. For the best performance, all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (Equivalent Series Inductance) and low ESR (Equivalent Series Resistance). Surface mount ceramic capacitors are ideal.

TYPICAL APPLICATION CIRCUIT

![Typical Application Circuit Diagram](image-url)

Notes:
1) The control voltage \(V_{IN} \) is wide, \(0 < V_{IN} < V_{CC} - 1V \)
2) The switch frequency can be changed by adjusting \(R \) and \(C \).

Figure 3—Voltage Controlled Frequency Circuit
PACKAGE INFORMATION

TSOT23-5

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

NOTES:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION AA.
6) DRAWING IS NOT TO SCALE.

DETAIL A

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.