DESCRIPTION

The MP4431 is a frequency-programmable (350kHz to 2.5MHz), synchronous, step-down switching regulator with integrated, internal, high-side and low-side power MOSFETs. It provides up to 1A of highly efficient output current with current mode control for fast loop response.

The wide 3.3V to 36V input range accommodates a variety of step-down applications in automotive input environments and is ideal for battery-powered applications due to its extremely low quiescent current.

The MP4431 employs advanced asynchronous mode (AAM), which helps achieve high efficiency in light-load condition by scaling down the switching frequency to reduce switching and gate driving losses.

Standard features include soft start (SS), external clock synchronization, enable (EN) control, and a power good (PG) indicator. High-duty cycle and low dropout mode are provided for automotive cold-crank condition.

Over-current protection (OCP) with valley-current detection is employed to prevent the inductor current from running away. Hiccup mode reduces the average current in short-circuit condition greatly. Thermal shutdown provides reliable and fault-tolerant operation.

The MP4431 is available in a QFN-16 (3mmx4mm) package.

FEATURES

- Wide 3.3V to 36V Operating Input Range
- 1A Continuous Output Current
- 1μA Low Shutdown Mode Current
- 10μA Sleep Mode Quiescent Current
- Internal 90mΩ High-Side and 80mΩ Low-Side MOSFETs
- 350kHz to 2.5MHz Programmable Switching Frequency
- Fixed Output Options: 3.3V, 3.8V, 5V
- Synchronize to External Clock
- Selectable In-Phase or 180° Out-of-Phase
- Power Good (PG) Indicator
- Programmable Soft-Start (SS) Time
- 80ns Minimum On Time
- Selectable Forced CCM or AAM
- Low Dropout Mode
- Over-Current Protection (OCP) with Valley-Current Detection and Hiccup
- Available in a QFN-16 (3mmx4mm) Package

APPLICATIONS

- Automotive Systems
- Industrial Power Systems

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP4431GL</td>
<td>QFN-16 (3mmx4mm)</td>
<td>See Below</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (e.g. MP4431GL–Z)

TOP MARKING

MPYW

4431

LLL

MP: MPS prefix
Y: Year code
WW: Week code
4431: First four digits of the part number
LLL: Lot number

PACKAGE REFERENCE

TOP VIEW

QFN-16 (3mmx4mm)
ABSOLUTE MAXIMUM RATINGS

Supplied voltage (VIN) ............... -0.3V to 40V
Switch voltage (VSW) ........... -0.3V to VIN + 0.3V
BST voltage (VBST)............ VSW + 6.5V
EN voltage (VEN) .................. -0.3V to 40V
BIAS voltage (VBIAS) ....... -0.3V to 20V
All other pins .................. -0.3V to 6V
Continuous power dissipation (TA = +25°C) (2)
QFN-16 (3mmx4mm) ................ 2.6W
Junction temperature .................... 150°C
Lead temperature .................. 260°C
Storage temperature ............... -65°C to 150°C

Recommended Operating Conditions
Supply voltage (VIN) ................. 3.3V to 36V
Operating junction temp. (TJ) ....... -40°C to +125°C

Thermal Resistance (3) θJA θJC
QFN-16 (3mmx4mm) ............... 48 ....... 11 ... °C/W

NOTES:
1) Absolute maximum ratings are rated under room temperature unless otherwise noted. Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature Tj(MAX), the junction-to-ambient thermal resistance θJA, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by PD(MAX)=(Tj(MAX)-TA)/θJA. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) Measured on JESD51-7, 4-layer PCB.
## ELECTRICAL CHARACTERISTICS

VIN = 12V, V<sub>EN</sub> = 2V, T<sub>j</sub> = -40°C to +125°C<sup>(4)</sup>, unless otherwise noted. Typical values at T<sub>j</sub> = +25°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN quiescent current</td>
<td>I&lt;sub&gt;Q&lt;/sub&gt;</td>
<td>V&lt;sub&gt;FB&lt;/sub&gt; = 0.85V, no load, no switching,</td>
<td>10</td>
<td>18</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V&lt;sub&gt;EN&lt;/sub&gt; = 0V</td>
<td></td>
<td>V&lt;sub&gt;FB&lt;/sub&gt; = 0.85V, no load, no switching,</td>
<td>25</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>VIN shutdown current</td>
<td>I&lt;sub&gt;SHDN&lt;/sub&gt;</td>
<td>V&lt;sub&gt;EN&lt;/sub&gt; = 0V</td>
<td>1</td>
<td>5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>VIN under-voltage lockout threshold rising</td>
<td>INUV&lt;sub&gt;RISING&lt;/sub&gt;</td>
<td>R&lt;sub&gt;FREQ&lt;/sub&gt; =</td>
<td>400</td>
<td>475</td>
<td>550</td>
<td>kHz</td>
</tr>
<tr>
<td>V&lt;sub&gt;FB&lt;/sub&gt; = 180kΩ or from sync clock</td>
<td></td>
<td>R&lt;sub&gt;FREQ&lt;/sub&gt; = 82kΩ or from sync clock</td>
<td>850</td>
<td>1000</td>
<td>1150</td>
<td>kHz</td>
</tr>
<tr>
<td>V&lt;sub&gt;FB&lt;/sub&gt; = 27kΩ or from sync clock</td>
<td></td>
<td>R&lt;sub&gt;FREQ&lt;/sub&gt; = 27kΩ or from sync clock</td>
<td>2250</td>
<td>2500</td>
<td>2750</td>
<td>kHz</td>
</tr>
<tr>
<td>Feedback reference voltage</td>
<td>V&lt;sub&gt;REF&lt;/sub&gt;</td>
<td>T&lt;sub&gt;j&lt;/sub&gt; = 25°C</td>
<td>784</td>
<td>800</td>
<td>816</td>
<td>mV</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>F&lt;sub&gt;SW&lt;/sub&gt;</td>
<td>R&lt;sub&gt;FREQ&lt;/sub&gt; = 180kΩ or from sync clock</td>
<td>400</td>
<td>475</td>
<td>550</td>
<td>kHz</td>
</tr>
<tr>
<td>Minimum on time&lt;sup&gt;(5)&lt;/sup&gt;</td>
<td>T&lt;sub&gt;ON_MIN&lt;/sub&gt;</td>
<td>Duty cycle = 40%</td>
<td>2.1</td>
<td>2.5</td>
<td>2.9</td>
<td>A</td>
</tr>
<tr>
<td>SYNC input low voltage</td>
<td>V&lt;sub&gt;SYNC_LOW&lt;/sub&gt;</td>
<td>V&lt;sub&gt;BST&lt;/sub&gt; - V&lt;sub&gt;SW&lt;/sub&gt; = 5V</td>
<td>90</td>
<td>155</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>SYNC input high voltage</td>
<td>V&lt;sub&gt;SYNC_HIGH&lt;/sub&gt;</td>
<td>V&lt;sub&gt;BST&lt;/sub&gt; - V&lt;sub&gt;SW&lt;/sub&gt; = 5V</td>
<td>80</td>
<td>145</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>Current limit</td>
<td>I&lt;sub&gt;LIMIT_HS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;OUT&lt;/sub&gt; = 3.3V, L = 4.7µH</td>
<td>1.1</td>
<td>1.35</td>
<td>1.6</td>
<td>A</td>
</tr>
<tr>
<td>Low-side valley current limit</td>
<td>I&lt;sub&gt;LIMIT_LS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;OUT&lt;/sub&gt; = 3.3V, L = 4.7µH</td>
<td>1.1</td>
<td>1.35</td>
<td>1.6</td>
<td>A</td>
</tr>
<tr>
<td>ZCD current</td>
<td>I&lt;sub&gt;ZCD&lt;/sub&gt;</td>
<td>V&lt;sub&gt;SS&lt;/sub&gt; = 0.8V</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>µA</td>
</tr>
<tr>
<td>Reverse current limit</td>
<td>I&lt;sub&gt;LIMIT_REVERSE&lt;/sub&gt;</td>
<td>Duty cycle = 40%</td>
<td>1.5</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Switch leakage current</td>
<td>I&lt;sub&gt;SW_LKG&lt;/sub&gt;</td>
<td>V&lt;sub&gt;BST&lt;/sub&gt; - V&lt;sub&gt;SW&lt;/sub&gt; = 5V</td>
<td>0.01</td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>HS switch on resistance</td>
<td>R&lt;sub&gt;ON_HS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;BST&lt;/sub&gt; - V&lt;sub&gt;SW&lt;/sub&gt; = 5V</td>
<td>90</td>
<td>155</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>LS switch on resistance</td>
<td>R&lt;sub&gt;ON_LS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;BST&lt;/sub&gt; - V&lt;sub&gt;SW&lt;/sub&gt; = 5V</td>
<td>80</td>
<td>145</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>Soft-start current</td>
<td>I&lt;sub&gt;SS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;SS&lt;/sub&gt; = 0.8V</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>µA</td>
</tr>
<tr>
<td>EN rising threshold</td>
<td>V&lt;sub&gt;EN,RISING&lt;/sub&gt;</td>
<td>Duty cycle = 40%</td>
<td>0.9</td>
<td>1.05</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>EN threshold hysteresis</td>
<td>V&lt;sub&gt;EN,HYS&lt;/sub&gt;</td>
<td>V&lt;sub&gt;SS&lt;/sub&gt; = 0.8V</td>
<td>60</td>
<td>120</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>PG rising threshold (V&lt;sub&gt;FB&lt;/sub&gt;/V&lt;sub&gt;REF&lt;/sub&gt;)</td>
<td>PG&lt;sub&gt;RISING&lt;/sub&gt;</td>
<td>V&lt;sub&gt;B&lt;/sub&gt; rising</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td>PG falling threshold (V&lt;sub&gt;FB&lt;/sub&gt;/V&lt;sub&gt;REF&lt;/sub&gt;)</td>
<td>PG&lt;sub&gt;FALLING&lt;/sub&gt;</td>
<td>V&lt;sub&gt;B&lt;/sub&gt; falling</td>
<td>105</td>
<td>110</td>
<td>115</td>
<td>%</td>
</tr>
<tr>
<td>PG deglitch timer</td>
<td>T&lt;sub&gt;PG_DEGLITCH&lt;/sub&gt;</td>
<td>PG from low to high</td>
<td>30</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>PG output voltage low</td>
<td>V&lt;sub&gt;PG_LOW&lt;/sub&gt;</td>
<td>I&lt;sub&gt;SINK&lt;/sub&gt; = 2mA</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC regulator</td>
<td>V&lt;sub&gt;CC&lt;/sub&gt;</td>
<td>I&lt;sub&gt;SINK&lt;/sub&gt; = 2mA</td>
<td>5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCC load regulation</td>
<td>I&lt;sub&gt;CC&lt;/sub&gt;</td>
<td>I&lt;sub&gt;SINK&lt;/sub&gt; = 2mA</td>
<td>3</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Thermal shutdown&lt;sup&gt;(6)&lt;/sup&gt;</td>
<td>T&lt;sub&gt;SD&lt;/sub&gt;</td>
<td>T&lt;sub&gt;SD&lt;/sub&gt; = 150°C</td>
<td>170</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Thermal shutdown hysteresis</td>
<td>T&lt;sub&gt;SD_HYS&lt;/sub&gt;</td>
<td>T&lt;sub&gt;SD&lt;/sub&gt; = 150°C</td>
<td>20</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

**NOTE:**

4) Not tested in production and guaranteed by over-temperature correlation.

5) Not tested in production, guaranteed by design and characterization.
TYPICAL CHARACTERISTICS
VIN=12V, TJ=-40°C to +125°C, unless otherwise noted

- Quiescent Current vs. Temperature
- Shutdown Current vs. Temperature
- VIN UVLO Threshold vs. Temperature
- Feedback Reference vs. Temperature
- Switching Frequency vs. Temperature
- Current Limit vs. Temperature
- Valley Current Limit vs. Temperature
- ZCD Current vs. Temperature
- Reverse Current Limit vs. Temperature
TYPICAL CHARACTERISTICS (continued)

VIN=12V, TJ=−40°C to +125°C, unless otherwise noted
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

VIN = 12V, VOUT = 3.3V, L = 10µH, FSW = 500kHz, AAM, T_A = +25°C, unless otherwise noted

Current Limit vs. Duty Cycle

Fsw vs. RFREQ

Output Voltage vs. Load Current

Dropout Performance (set nominal VOUT > VIN)

Line Regulation

Load Regulation
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN = 12V, VOUT = 3.3V, L = 10µH, FSW = 500kHz, AAM, TA = +25°C, unless otherwise noted
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN= 12V, VOUT= 3.3V, L= 10µH, FSW= 500kHz, AAM, TA=+25°C, unless otherwise noted
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN= 12V, V<sub>OUT</sub>= 3.3V, L= 10µH, F<sub>SW</sub>= 500kHz, AAM, T<sub>A</sub>=+25°C, unless otherwise noted

Steady State
I<sub>OUT</sub>= 0A, AAM Mode

Steady State
I<sub>OUT</sub>= 1mA, AAM Mode

Steady State
I<sub>OUT</sub>= 1A

Start-Up through VIN
I<sub>OUT</sub>= 0A

Start-Up through VIN
I<sub>OUT</sub>= 1A

Shutdown through VIN
I<sub>OUT</sub>= 0A

Start-Up through EN
I<sub>OUT</sub>= 0A

Start-Up through EN
I<sub>OUT</sub>= 1A
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN= 12V, VOUT= 3.3V, L= 10µH, FSW= 500kHz, AAM, T_A=+25°C, unless otherwise noted

SCP Entry
IOUT=1A to Short Circuit

SCP Steady State
Short Circuit to IOUT=0A

SCP Recovery
Short Circuit to IOUT=1A

SYNC Operation (In-Phase)
Drive PHASE High, IOUT=1A

SYNC Operation (180° Out-of-Phase)
Drive PHASE Low, IOUT=1A
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN= 12V, VOUT= 3.3V, L= 10µH, FSW= 500kHz, AAM, TA=+25°C, unless otherwise noted

Forced CCM Operation
VOUT=0A, Forced CCM Mode

VIN=3.3V, VOUT Set to 3.3V, IOUT=0A

Dropout Operation
VOUT=3.3V, VOUT Set to 3.3V, IOUT=1A

Load Transient
IOUT=0.5A<->1A, 1.8A/µs

VIN Ramp Up and Down
IOUT=0.1A

VIN Ramp Down and Up
IOUT=1mA

VIN Ramp Down and Up
IOUT=1A

Cold Crank
IOUT=1A

Load Dump
VIN=12V<->36V, IOUT=1A

2µs/div

10µs/div

4µs/div

200µs/div

1s/div

10s/div

10s/div

20ms/div

100ms/div
## PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHASE</td>
<td><strong>Selectable in-phase or 180° out-of-phase of SYNC input.</strong> Drive PHASE high to be in-phase. Drive PHASE low to be 180° out-of-phase.</td>
</tr>
<tr>
<td>2</td>
<td>VIN</td>
<td><strong>Input supply.</strong> VIN supplies power to all of the internal control circuitries and the power switch connected to SW. A decoupling capacitor to ground must be placed close to VIN to minimize switching spikes.</td>
</tr>
<tr>
<td>3, 10</td>
<td>SW</td>
<td><strong>Switch node.</strong> SW is the output of the internal power switch.</td>
</tr>
<tr>
<td>4, 9</td>
<td>PGND</td>
<td><strong>Power ground.</strong> PGND is the reference ground of the power device and requires careful consideration during PCB layout. For best results, connect PGND with copper pours and vias.</td>
</tr>
<tr>
<td>5</td>
<td>EN</td>
<td><strong>Enable.</strong> Pull EN below the specified threshold to shut the chip down. Pull EN above the specified threshold to enable the chip.</td>
</tr>
<tr>
<td>6</td>
<td>SYNC</td>
<td><strong>Synchronize.</strong> Apply a 350kHz to 2.5MHz clock signal to SYNC to synchronize the internal oscillator frequency to the external clock. The external clock should be at least 250kHz larger than the R\textsubscript{FREQ} set frequency. SYNC can also be used to select forced continuous conduction mode (CCM) or advanced asynchronous mode (AAM). Drive SYNC high before the chip starts up to choose forced CCM. Drive SYNC low or leave SYNC floating to choose AAM.</td>
</tr>
<tr>
<td>7</td>
<td>PG</td>
<td><strong>Power good indicator.</strong> The output of PG is an open drain and goes high if the output voltage is within ±10% of the nominal voltage.</td>
</tr>
<tr>
<td>8</td>
<td>BIAS</td>
<td><strong>External power supply for the internal regulator.</strong> Connect BIAS to an external power supply (5V ≤ V\textsubscript{BIAS} ≤ 18V) to reduce power dissipation and increase efficiency. Float BIAS or connect BIAS to ground if not used.</td>
</tr>
<tr>
<td>11</td>
<td>BST</td>
<td><strong>Bootstrap.</strong> BST is the positive power supply for the high-side MOSFET driver connected to SW. Connect a bypass capacitor between BST and SW.</td>
</tr>
<tr>
<td>12</td>
<td>VCC</td>
<td><strong>Internal bias supply.</strong> VCC supplies power to the internal control circuit and gate drivers. A ≥1µF decoupling capacitor to ground is required close to VCC.</td>
</tr>
<tr>
<td>13</td>
<td>AGND</td>
<td><strong>Analog ground.</strong> AGND is the reference ground of the logic circuit.</td>
</tr>
<tr>
<td>14</td>
<td>SS</td>
<td><strong>Soft-start input.</strong> Place an external capacitor from SS to AGND to set the soft-start period. The MP4431 sources 10µA from SS to the soft-start capacitor during start-up. As the SS voltage rises, the feedback threshold voltage increases to limit inrush current during start-up.</td>
</tr>
<tr>
<td>15</td>
<td>FB</td>
<td><strong>Feedback input.</strong> Connect FB to the tap of an external resistor divider from the output to AGND to set the output voltage. The feedback threshold voltage is 0.8V. Place the resistor divider as close to FB as possible. Avoid placing vias on the FB traces.</td>
</tr>
<tr>
<td>16</td>
<td>FREQ</td>
<td><strong>Switching frequency program.</strong> Connect a resistor from FREQ to ground to set the switching frequency.</td>
</tr>
</tbody>
</table>
Figure 1: Functional Block Diagram
TIMING SEQUENCE

Figure 2: Time Sequence
OPERATION

The MP4431 is a high-frequency, synchronous, rectified, step-down, switch-mode converter with integrated, internal, high-side and low-side power MOSFETs. The MP4431 offers a very compact solution that achieves 1A of continuous output current with excellent load and line regulation over a wide 3.3V to 36V input supply range.

The MP4431 features a switching frequency programmable from 350kHz to 2.5MHz, external soft start, power good indication, and precision current limit. Its very low operational quiescent current makes it suitable for battery-powered applications.

Pulse-Width Modulation (PWM) Control

At moderate to high output current, the MP4431 operates in a fixed-frequency, peak-current-control mode to regulate the output voltage. An internal clock initiates a pulse-width modulation (PWM) cycle. At the rising edge of the clock, the high-side power MOSFET (HS-FET) is turned on, and the inductor current rises linearly to provide energy to the load. The HS-FET remains on until its current reaches the value set by the COMP voltage (\(V_{\text{COMP}}\)), which is the output of the internal error amplifier. If the current in the HS-FET does not reach \(V_{\text{COMP}}\) in one PWM period, the HS-FET remains on, saving a turn-off operation.

When the HS-FET is off, it remains off until the next clock cycle begins. The low-side MOSFET (LS-FET) is turned on immediately while the inductor current flows through it.

To prevent shoot-through, a dead time is inserted to prevent the HS-FET and LS-FET from being on at the same time. For each turn-on and turn-off in a switching cycle, the HS-FET turns on or off with a minimum on and off time limit.

Forced CCM and AAM

The MP4431 has selectable forced continuous conduction mode (CCM) and advanced asynchronous mode (AAM) (see Figure 3). Driving SYNC higher than its specified threshold before the chip starts up forces the device into CCM with a fixed frequency, regardless of the output load current.

Connect SYNC to VCC if there is no additional power supply available to pull SYNC high before the chip starts up.

Once the device is in CCM, the pull-up at SYNC can be removed, and SYNC can be used to synchronize switching. The advantage of CCM is the controllable frequency and smaller output ripple, but it also has low efficiency at light load.

Driving SYNC below its specified threshold or leaving SYNC floating before the chip starts up enables AAM power-save mode. The MP4431 first enters non-synchronous operation for as long as the inductor current approaches zero at light load. If the load is further decreased or is at no load, then \(V_{\text{COMP}}\) is below the internally set AAM value (\(V_{\text{AAM}}\)). The MP4431 then enters sleep mode, which consumes very low quiescent current to further improve light-load efficiency.

In sleep mode, the internal clock is blocked first, so the MP4431 skips some pulses. Since the FB voltage (\(V_{\text{FB}}\)) is lower than the internal 0.8V reference (\(V_{\text{REF}}\)) at this time, \(V_{\text{COMP}}\) ramps up until it crosses over \(V_{\text{AAM}}\). Then the internal clock is reset and the crossover time is taken as the benchmark of the next clock. This control scheme helps achieve high efficiency by scaling down the frequency to reduce the switching and gate driver losses during light-load or no-load conditions.

When the output current increases from light-load condition, \(V_{\text{COMP}}\) becomes larger, and the switching frequency increases. If the DC value of \(V_{\text{COMP}}\) exceeds \(V_{\text{AAM}}\), the operation mode resumes discontinuous conduction mode (DCM) or CCM, which have a constant switching frequency.

![Figure 3: Forced CCM and AAM](image-url)
Error Amplifier (EA)
The error amplifier (EA) compares \( V_{FB} \) with \( V_{REF} \) and outputs a current proportional to the difference between the two. This output current then charges or discharges the internal compensation network to form \( V_{COMP} \), which controls the power MOSFET current. The optimized internal compensation network minimizes the external component count and simplifies the control loop design.

Internal Regulator and BIAS
Most of the internal circuitry is powered on by the 5V internal regulator. This regulator takes the VIN input and operates in the full VIN range. When VIN exceeds 5V, the output of the regulator is in full regulation. When VIN falls below 5V, the output decreases following VIN. A decoupling ceramic capacitor \( \geq 1 \mu F \) is needed close to VCC.

For better thermal performance, connect BIAS to an external power supply between 5V and 18V. The BIAS supply overrides VIN to power the internal regulator. Using the BIAS supply allows VCC to be derived from a high-efficiency external source, such as \( V_{OUT} \). A decoupling ceramic capacitor \( \geq 1 \mu F \) is needed close to VCC.

Under-Voltage Lockout (UVLO)
Under-voltage lockout (UVLO) protects the chip from operating at an insufficient supply voltage. The UVLO comparator monitors the output voltage of the internal regulator (VCC). The UVLO rising threshold is about 2.8V with a 150mV hysteresis.

Enable (EN) Control
EN is a digital control pin that turns the regulator on and off. When EN is pulled below its threshold voltage, the chip is put into the lowest shutdown current mode. Pulling EN above its threshold voltage turns on the part. Do not float EN.

Power Good (PG) Indicator
The MP4431 has a power good (PG) indicator. PG is the open drain of a MOSFET and should be connected to VCC or another voltage source through a resistor (e.g.: 100kΩ). In the presence of an input voltage, the MOSFET turns on so that PG is pulled low before SS is ready. When the regulator output is within ±10% of its nominal output, the PG output is pulled high after a delay, typically 30μs. When the output voltage moves outside of this range with a hysteresis, the PG output is pulled low with a 50μs delay to indicate a failure output status.

Programmable Frequency
The oscillating frequency of the MP4431 can be programmed either by an external frequency resistor \( R_{FREQ} \) or by a logic level synchronous clock. The frequency resistor should be located between FREQ and ground as close as to the device as possible.

The value of \( R_{FREQ} \) can be estimated with Equation (1):

\[
R_{FREQ}(\Omega) = \frac{170000}{f_{SW,TT}(kHz)}
\]

The calculated resistance may need fine-tuning during the bench test.

FREQ is not allowed to be floated, even if an external SYNC clock is added.

SYNC and PHASE
The internal oscillator frequency can be synchronized to an external clock ranging from 350kHz up to 2.5MHz through SYNC. The external clock should be at least 250kHz larger than the \( R_{FREQ} \) set frequency. Ensure that the high amplitude of the SYNC clock is higher than 1.8V, and the low amplitude is lower than 0.4V. There is no pulse width requirement, but there is always parasitic capacitance of the pad, so if the pulse width is too short, a clear rising and falling edge may not be seen due to the parasitic capacitance. A pulse longer than 100ns is recommended in application.

PHASE is used when two or more MP4431 devices are in parallel with the same SYNC clock. Pulling PHASE high forces the device to operate in-phase of the SYNC clock. Pulling PHASE low forces the device to be 180° out-of-phase of the SYNC clock. Setting different voltages for PHASE, two devices can operate 180° out-of-phase to reduce the total input current ripple so a smaller input bypass capacitor can be used (see Figure 4). The PHASE rising threshold is about 2.5V with a 400mV hysteresis.
Soft Start (SS)

Soft start (SS) is implemented to prevent the converter output voltage from overshooting during start-up. When the chip starts up, an internal current source begins charging the external soft-start capacitor. When the soft-start voltage ($V_{SS}$) is lower than the internal reference ($V_{REF}$), $V_{SS}$ overrides $V_{REF}$, so the error amplifier uses $V_{SS}$ as the reference. When $V_{SS}$ is higher than $V_{REF}$, the error amplifier uses $V_{REF}$ as the reference.

The soft-start time ($t_{SS}$) set by the external SS capacitor can be calculated with Equation (2):

$$t_{SS} (\text{ms}) = \frac{C_{SS} (\text{nF}) \times V_{REF} (\text{V})}{I_{SS} (\mu\text{A})}$$

(2)

Where $C_{SS}$ is the external SS capacitor, $V_{REF}$ is 0.8V, and $I_{SS}$ is the internal 10μA SS charge current.

SS can be used for tracking and sequencing.

Pre-Bias Start-Up

At start-up, if $V_{FB}$ is higher than $V_{SS}$, which means the output has a pre-bias voltage, neither the HS-FET nor the LS-FET are turned on until $V_{SS}$ is higher than $V_{FB}$.

Over-Current Protection (OCP) and Hiccup

The MP4431 has cycle-by-cycle peak current-limit protection with valley-current detection and hiccup mode.

The power MOSFET current is accurately sensed via a current sense MOSFET. It is then fed to the high-speed current comparator for current-mode control purposes. During the HS-FET on state, if the sensed current exceeds the peak current limit value set by the COMP high-clamp voltage, the HS-FET turns off immediately. Then the LS-FET turns on to discharge the energy, and the inductor current decreases. The HS-FET remains off unless the inductor valley current is lower than a certain current threshold (valley current limit), even though the internal clock pulses high. If the inductor current does not drop below the valley current limit when the internal clock pulses high, the HS-FET misses the clock, and the switching frequency decreases to half the nominal value. Both the peak and valley current limits assist in keeping the inductor current from running away during an overload or short-circuit condition.

When the output is shorted to ground, causing the output voltage to drop below 55% of its nominal output, the peak current limit is kicked, and the device considers this to be an output dead short and triggers hiccup mode immediately to restart the part periodically.

In hiccup mode, the MP4431 disables its output power stage and discharges the soft-start capacitor slowly. The MP4431 restarts with a full soft start when the soft-start capacitor is fully discharged. If the short-circuit condition still remains after the soft start ends, the device repeats this operation until the fault is removed and output returns to the regulation level. This protection mode reduces the average short circuit current greatly to alleviate thermal issues and protect the regulator.

Floating Driver and Bootstrap Charging

A 0.1μF to 1μF external, ceramic, bootstrap capacitor powers the floating power MOSFET driver. The floating driver has its own UVLO protection with a rising threshold of 2.5V and hysteresis of 200mV.

The bootstrap capacitor voltage is charged to ~5V from VCC through a PMOS pass transistor when the LS-FET is on.

At a high duty cycle operation or sleep mode condition, the time period available to the bootstrap charging is less, so the bootstrap capacitor may not be charged sufficiently. In case the external circuit does not have sufficient voltage or time to charge the bootstrap capacitor, extra external circuitry can be used to ensure that the bootstrap voltage is in the normal operation region.
**BST Refresh**
To improve dropout, the MP4431 is designed to operate at close to 100% duty cycle for as long as the BST to SW voltage is greater than 2.5V. When the voltage from BST to SW drops below 2.5V, the HS-FET is turned off using a UVLO circuit, which forces the LS-FET on to refresh the charge on the BST capacitor.

Since the supply current sourced from the BST capacitor is low, the HS-FET can remain on for more switching cycles than are required to refresh the capacitor, making the effective duty cycle of the switching regulator high.

The effective duty cycle during the dropout of the regulator is mainly influenced by the voltage drops across the HS-FET, LS-FET, inductor resistance, and printed circuit board resistance.

**Thermal Shutdown**
Thermal shutdown is implemented to prevent the chip from running away thermally. When the silicon die temperature exceeds its upper threshold, the power MOSFETs shut down. When the temperature drops below its lower threshold, the chip is enabled again.

**Start-Up and Shutdown**
If both VIN and EN exceed their appropriate thresholds, the chip starts up. The reference block starts first, generating a stable reference voltage and current, and then the internal regulator is enabled. The regulator provides a stable supply for the rest of the circuitries.

While the internal supply rail is up, an internal timer holds the power MOSFET off for about 50µs to blank start-up glitches. When the soft-start block is enabled, it first holds its SS output low to ensure that the rest of the circuitries are ready and slowly ramps up.

Three events can shut down the chip: VIN low, EN low, and thermal shutdown. During the shutdown procedure, the signaling path is blocked first to avoid any fault triggering. \( V_{COMP} \) and the internal supply rail are then pulled down. The floating driver is not subject to this shutdown command, but its charging path is disabled.
APPLICATION INFORMATION

Setting the Output Voltage
The external resistor divider connected to FB sets the output voltage (see Figure 5).

![Figure 5: Feedback Network](image)

Choose \( R_{FB1} \) to be around 40kΩ. Then calculate \( R_{FB2} \) with Equation (3):

\[
R_{FB2} = \frac{R_{FB1}}{0.8V} - 1
\]  

(3)

Table 1 lists the recommended feedback resistor values for common output voltages.

**Table 1: Resistor Selection for Common Output Voltages**

<table>
<thead>
<tr>
<th>( V_{OUT} ) (V)</th>
<th>( R_{FB1} ) (kΩ)</th>
<th>( R_{FB2} ) (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>41.2 (1%)</td>
<td>13 (1%)</td>
</tr>
<tr>
<td>5</td>
<td>68.1 (1%)</td>
<td>13 (1%)</td>
</tr>
</tbody>
</table>

Selecting the Input Capacitor
The input current to the step-down converter is discontinuous and therefore requires a capacitor to supply AC current to the converter while maintaining the DC input voltage. For the best performance, use low ESR capacitors. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients.

For most applications, use a 4.7µF to 10µF capacitor. It is strongly recommended to use another lower value capacitor (e.g.: 0.1µF) with a small package size (0603) to absorb high-frequency switching noise. Place the smaller capacitor as close to VIN and GND as possible.

Since \( C_{IN} \) absorbs the input switching current, it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated with Equation (4):

\[
I_{CIN} = I_{LOAD} \times \sqrt{\frac{V_{OUT}^2}{V_{IN}} \times (1 - \frac{V_{OUT}}{V_{IN}})}
\]  

(4)

The worst-case condition occurs at \( VIN = 2V_{OUT} \), shown in Equation (5):

\[
I_{CIN} = \frac{I_{LOAD}}{2}
\]  

(5)

For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum, or ceramic. When using electrolytic or tantalum capacitors, add a small, high-quality ceramic capacitor (e.g.: 0.1µF) as close to the IC as possible. When using ceramic capacitors, ensure that they have enough capacitance to provide a sufficient charge to prevent excessive voltage ripple at the input. The input voltage ripple caused by the capacitance can be estimated with Equation (6):

\[
\Delta V_{IN} = \frac{I_{LOAD}}{f_{SW} \times C_{IN}} \times \frac{V_{OUT}}{V_{IN}} \times (1 - \frac{V_{OUT}}{V_{IN}})
\]  

(6)

Selecting the Output Capacitor
The output capacitor maintains the DC output voltage. Use ceramic, tantalum, or low ESR electrolytic capacitors. For best results, use low ESR capacitors to keep the output voltage ripple low. The output voltage ripple can be estimated with Equation (7):

\[
\Delta V_{OUT} = \frac{V_{OUT}}{f_{SW} \times L} \times (1 - \frac{V_{OUT}}{V_{IN}}) \times (R_{ESR} + \frac{1}{8f_{SW} \times C_{OUT}})
\]  

(7)

Where \( L \) is the inductor value, and \( R_{ESR} \) is the equivalent series resistance (ESR) value of the output capacitor.

For ceramic capacitors, the capacitance dominates the impedance at the switching frequency and causes the majority of the output voltage ripple.
For simplification, the output voltage ripple can be estimated with Equation (8):

$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_{SW}^2 \times L \times C_{OUT}} \times (1 - \frac{V_{OUT}}{V_{IN}})$$  (8)

For tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated with Equation (9):

$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{SW} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}$$  (9)

The characteristics of the output capacitor also affect the stability of the regulation system. The MP4431 can be optimized for a wide range of capacitance and ESR values.

**Selecting the Inductor**

A 1µH to 10µH inductor with a DC current rating at least 25% higher than the maximum load current is recommended for most applications. For higher efficiency, choose an inductor with a lower DC resistance. A larger-value inductor results in less ripple current and a lower output ripple voltage, but also has a larger physical size, higher series resistance, and lower saturation current. A good rule for determining the inductor value is to allow the inductor ripple current to be approximately 30% of the maximum load current. The inductance value can then be calculated with Equation (10):

$$L = \frac{V_{OUT}}{f_{SW} \times \Delta I_L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$  (10)

Where $\Delta I_L$ is the peak-to-peak inductor ripple current.

Choose the inductor ripple current to be approximately 30% of the maximum load current. The maximum inductor peak current can be calculated with Equation (11):

$$I_{LP} = I_{LOAD} + \frac{V_{OUT}}{2f_{SW} \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$  (11)

**VIN UVLO Setting**

The MP4431 has an internal, fixed, under-voltage lockout (UVLO) threshold. The rising threshold is 2.8V, while the falling threshold is about 2.65V. For applications that need a higher UVLO point, an external resistor divider between VIN and EN can be used to achieve a higher equivalent UVLO threshold (see Figure 6).

![Figure 6: Adjustable UVLO Using EN Divider](image)

The UVLO threshold can be calculated with Equation (12) and Equation (13):

$$INUV_{RISING} = (1 + \frac{R_{UP}}{R_{DOWN}}) \times V_{EN_RISING}$$  (12)

$$INUV_{FALLING} = (1 + \frac{R_{UP}}{R_{DOWN}}) \times V_{EN_FALLING}$$  (13)

Where $V_{EN_RISING}$ is 1.05V, and $V_{EN_FALLING}$ is 0.93V.

**External BST Diode and Resistor**

An external BST diode can enhance the efficiency of the regulator when the duty cycle is high. A power supply between 2.5V and 5V can be used to power the external bootstrap diode. VCC or VOUT is recommended to be this power supply in the circuit (see Figure 7).

![Figure 7: External Bootstrap Diode and Resistor](image)

The recommended external BST diode is IN4148, and the recommended BST capacitor value is 0.1µF to 1µF. A resistor in series with the BST capacitor ($R_{BST}$) can reduce the SW rising rate and voltage spikes. This helps enhance EMI performance and reduce voltage stress at a high VIN. A higher resistance is better for SW spike reduction but compromises efficiency. To make a tradeoff between EMI and efficiency, a ≤20Ω $R_{BST}$ is recommended.
PCB Layout Guidelines (6)
Efficient PCB layout, especially for the input capacitor placement, is critical for stable operation. A four-layer layout is strongly recommended to achieve better thermal performance. For best results, refer to Figure 8 and follow the guidelines below.

1. Use a large ground plane to connect to PGND directly.
2. Add vias near PGND if the bottom layer is a ground plane.
3. Ensure that the high-current paths at GND and VIN have short, direct, and wide traces.
4. Place the ceramic input capacitor, especially the small package size (0603) input bypass capacitor, as close to VIN and PGND as possible to minimize high-frequency noise.
5. Keep the connection of the input capacitor and VIN as short and wide as possible.
6. Place the VCC capacitor as close to VCC and GND as possible.
7. Route SW and BST away from sensitive analog areas, such as FB.
8. Place the feedback resistors close to the chip to ensure that the trace which connects to FB is as short as possible.
9. Use multiple vias to connect the power planes to the internal layers.

NOTE:
6) The recommended PCB layout is based on Figure 9.
Figure 9: $V_{OUT} = 3.3V$, $I_{OUT} = 1A$, $F_{SW} = 500kHz$

Figure 10: $V_{OUT} = 3.3V$, $F_{SW} = 500kHz$ for $<100k\Omega$ FB Divider Application
TYPICAL APPLICATION CIRCUITS (continued)

Figure 11: \( V_{\text{OUT}} = 5 \text{V}, F_{\text{SW}} = 500\text{kHz} \)

Figure 12: \( V_{\text{OUT}} = 5 \text{V}, F_{\text{SW}} = 500\text{kHz} \) for <100k\( \Omega \) FB Divider Application
TYPICAL APPLICATION CIRCUITS (continued)

Figure 13: V_{OUT} = 3.3V, F_{SW} = 2.2MHz

Figure 14: V_{OUT} = 3.3V, F_{SW} = 2.2MHz for <100kΩ FB Divider Application
TYPICAL APPLICATION CIRCUITS (continued)

Figure 15: \( V_{\text{OUT}} = 5V, F_{\text{SW}} = 2.2MHz \)

Figure 16: \( V_{\text{OUT}} = 5V, F_{\text{SW}} = 2.2MHz \) for <100k\( \Omega \) FB Divider Application
MP4431 – 36V, 1A, LOW IQ, SYNC, STEP-DOWN CONVERTER

PACKAGE INFORMATION

QFN-16 (3mmx4mm)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
3) JEDEC REFERENCE IS MO-220.
4) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.