DESCRIPTION
The MP3308 is a monolithic step-up converter designed to drive arrays of white LEDs from a 3.3V input or a single-cell lithium-ion battery. The MP3308 uses fixed-frequency current-mode architecture to regulate the LED current, which is measured through an external current sense resistor. Its low 200mV feedback voltage reduces power loss and improves efficiency.

The MP3308 features dual PWM-dimming input control and true PWM dimming—this control allows for a wide luminescent range that makes the display readable under a variety of ambient light conditions with minimal PWM dimming noise.

The MP3308 includes over-voltage protection, short-circuit protection, under-voltage lockout, current limiting, and thermal overload protection.

The MP3308 is available in small 3mmx4mm 14-pin QFN package.

FEATURES
- Internal Power MOSFET
- Drives Up to 10 White LEDs in Series
- 2.2MHz Fixed Switching Frequency
- Up to 88% Efficiency
- Dual PWM-Dimming Input Control
- Internal 1.3A Current Limit
- ±3% True PWM Dimming Duty Accuracy
- Adjustable Over-Voltage Protection Threshold
- Low 200mV Feedback Voltage
- Under-Voltage Lockout, Short-Circuit Protection, Thermal Shutdown
- Available in 3mmx4mm QFN14 Package

APPLICATIONS
- Small LCD Panels
- Digital Picture Frames
- Smartphones
- Portable Media Players
- Digital Cameras

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page.

“MPS” and “The Future of Analog IC Technology” are registered trademarks of Monolithic Power Systems, Inc.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP3308DL</td>
<td>QFN14 (3x4mm)</td>
<td>3308</td>
</tr>
</tbody>
</table>

For Tape & Reel, add suffix –Z (e.g. MP3308DL-Z).
For RoHS, compliant packaging, add suffix –LF (e.g. MP3308DL–LF–Z).

ABSOLUTE MAXIMUM RATINGS (1)
SW Pin, LED Pin.........................-0.5V to +40V
All Other Pins........................-0.3V to +6.5V
Storage Temperature...............-55°C to +150°C
Continuous Power Dissipation (TA = 25°C) (2)

Recommended Operating Conditions (3)
Supply Voltage (VIN)..................3V to 6V
SW Pin..................................VIN to 36V
Operating Junction Temp. (Tj)....-40°C to +125°C

Thermal Resistance (4) θJA θJC
QFN14 (3x4mm)48 10... °C/W

Notes:
1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature Tj (MAX), the junction-to-ambient thermal resistance θJA, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by Pd (MAX) = (Tj (MAX) - TA)/θJA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on JESD51-7, 4-layer PCB.
ELECTRICAL CHARACTERISTICS

\(V_{\text{IN}} = V_{\text{EN}} = 5\, \text{V}, \, T_A = 25^\circ\text{C}, \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Input Voltage</td>
<td>(V_{\text{IN}})</td>
<td></td>
<td>2.5</td>
<td>6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Current (Shutdown)</td>
<td>(I_{\text{IN,SD}})</td>
<td>(V_{\text{EN}} = 0, \text{V})</td>
<td>25</td>
<td>30</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Supply Current (Quiescent)</td>
<td>(I_{\text{IN,QS}})</td>
<td>(V_{\text{ISET}} = 0.3, \text{V})</td>
<td>860</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(f_{\text{SW}})</td>
<td></td>
<td>1.7</td>
<td>2.2</td>
<td>2.7</td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>(D_{\text{MAX}})</td>
<td>(V_{\text{ISET}} = 0, \text{V})</td>
<td>90</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Lockout</td>
<td>(V_{\text{UVLO}})</td>
<td>(V_{\text{IN}}) Rising</td>
<td>2.1</td>
<td>2.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Under Voltage Lockout Hysteresis</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Over-Voltage Protection Threshold</td>
<td>(V_{\text{OVP}})</td>
<td>(V_{\text{OUT}}) Rising</td>
<td>0.9</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Enable and Dimming</td>
<td>(V_{\text{LOGIC_LOW}})</td>
<td>(V_{\text{EN}}) Falling</td>
<td>0.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>EN/PWMIX ON Threshold</td>
<td>(V_{\text{LOGIC_HIGH}})</td>
<td>(V_{\text{EN}}) Rising</td>
<td>1.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>True PWM Dimming Duty Accuracy</td>
<td>(\Delta D_{\text{PWM}})</td>
<td>(D_{\text{PWMIA}}=D_{\text{PWMIB}}=70%)</td>
<td>±3</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>(V_{\text{ISET}})</td>
<td>(V_{\text{EN}} > 2, \text{V})</td>
<td>185</td>
<td>200</td>
<td>215</td>
<td>mV</td>
</tr>
<tr>
<td>ISET Input Bias Current</td>
<td>(V_{\text{ISET}} = 0.2, \text{V})</td>
<td></td>
<td>-600</td>
<td>-300</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Output Switch</td>
<td>(R_{\text{ON}})</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SW Current Limit</td>
<td></td>
<td>Duty Cycle = 60%</td>
<td>1.33</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>LED Switch ON-Resistance (M2 in the functional block diagram)</td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
</tbody>
</table>
PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>Power Switch Output. Drain of the internal MOSFET switch. Connect to the power inductor and the output rectifier. SW can swing between GND and 40V.</td>
</tr>
<tr>
<td>2</td>
<td>PGND, Exposed Pad</td>
<td>Power Ground. Connect exposed pad to GND plane for proper thermal performance.</td>
</tr>
<tr>
<td>3</td>
<td>IN</td>
<td>Input Supply Pin. Locally bypassed.</td>
</tr>
<tr>
<td>4</td>
<td>PWMIA</td>
<td>PWM Input A. Apply one PWM signal on this pin for brightness control. This signal is uniform and filtered at PWMOA pin.</td>
</tr>
<tr>
<td>5</td>
<td>PWMIB</td>
<td>PWM Input B. Apply the other PWM signal on this pin for brightness control. This signal is uniform and filtered at PWMOB pin.</td>
</tr>
<tr>
<td>6</td>
<td>EN</td>
<td>ON/OFF Control. Hold EN pin low to turn off part, high to turn on part.</td>
</tr>
<tr>
<td>7</td>
<td>FSET</td>
<td>PWM Dimming Frequency Programmer. Connect a capacitor from this pin to GND to set the PWM-dimming frequency as the formula, $F_{\text{PWM}}(\text{Hz}) = \frac{16176}{C_{\text{FSET}}(\text{nF})}$</td>
</tr>
<tr>
<td>8</td>
<td>PWMOB</td>
<td>PWM Filtered Output B. Connect a capacitor from this pin to GND.</td>
</tr>
<tr>
<td>9</td>
<td>PWMOA</td>
<td>PWM Filtered Output A. Connect a capacitor from this pin to GND.</td>
</tr>
<tr>
<td>10, 14</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>11</td>
<td>OVP</td>
<td>Over-Voltage Protection. Connect a resistor divider from output to this pin to adjust the OVP threshold. When this pin voltage reaches the shutdown threshold 0.9V, the switch turns off.</td>
</tr>
<tr>
<td>12</td>
<td>LED</td>
<td>LED Current Input. Open-drain output of an internal dimming control switch. Connect the LED cathode to this pin.</td>
</tr>
<tr>
<td>13</td>
<td>ISET</td>
<td>LED Current Set. This pin is the source output of an internal dimming control switch. The MP3308 regulates the voltage across the current setting resistor. Tie a current-setting resistor from this pin to ground. Regulates the voltage to 200mV.</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

V(Iset) vs. Temperature

V(OVP) vs. Temperature

Quiescent Current vs. Temperature

Operation Frequency vs. Temperature
TYPICAL PERFORMANCE CHARACTERISTICS

$V_{IN} = 5V$, 3 LEDs in series, 9 strings parallel, 120mA/string, unless otherwise noted.

![Efficiency vs. V_{IN} graph]

![PWMIA Dimming Duty vs. WLED Current graph]

![PWMIB Dimming Duty vs. WLED Current graph]

![PWMIA*DPWMIB vs. WLED Current graph]

![Steady State Operation graph]

![V_{IN} Power On graph]

![V_{IN} Shut Down graph]

![EN Power On graph]

![EN Shut Down graph]
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

PWM Dimming
- \(f_{\text{pwmi}} = 2\, \text{kHz}, \quad D_{\text{pwmi}} = 50\% \)
- \(f_{\text{pwmi}} = 200\, \text{Hz}, \quad f_{\text{PWM}} = 17\, \text{kHz} \)

Open Load Protection

Short Protection
Figure 1—Functional Block Diagram
OPERATION

The MP3308 uses a constant-frequency peak-current–mode boost-regulator architecture to regulate multiple strings of white LEDs connected in series.

At the start of each oscillator cycle, the control circuitry turns on the MOSFET. A stabilizing ramp at the output of the current sense amplifier prevents sub-harmonic oscillations at duty cycles greater than 50 percent—this output feeds into the positive input of the PWM comparator. When this voltage equals the output voltage of the error amplifier the power MOSFET turns off.

The error amplifier compares the difference between the 200mV reference voltage and the feedback voltage. If the feedback voltage drops, the output of the error amplifier increases, resulting in more current flowing through the power MOSFET and increasing the power delivered to the output, thus regulating the output.

Dual PWM dimming can adjust LED brightness. True PWM dimming allows for flexible control of the backlighting luminance to improve visibility for a wide range of ambient brightness. A capacitor on the FSET pin sets the PWM dimming frequency with a duty cycle of:

$$D_{\text{PWMIA}} \times D_{\text{PWMIB}}$$

Where D_{PWMIA} is the duty cycle on the PWMIA pin, and D_{PWMIB} is the duty cycle on the PWMIB pin.

External capacitors on the PWMOA and the PWMOB pins smooth the PWM signals to provide DC signals by selecting the proper time constant.

MP3308 provides over-voltage protection, which will shut off the MP3308 if the output voltage goes too high. OVP pin senses the output voltage through the tap of a resistor divider between V_{OUT} and GND. In the case of an LED failure, the feedback voltage goes to zero and the part will run at maximum duty cycle. The output voltage then rises and triggers OVP if the OVP pin exceeds 1.23V.

MP3308 also provides short-circuit protection in cases where individual LEDs on a string or a whole LED string shorts: This condition causes the ISET pin to pull high. If the voltage exceeds 0.4V for more than 240µs, MP3308 will shutdown.
Figure 2 shows a typical application circuit that can drive up to nine strings of three white LEDs with an output of 9V/180mA. A 4.7μF output capacitor is sufficient for most applications. A 3.3μH inductor with low DC inductor resistance (DCR) will improve efficiency. Two 4.7μF ceramic capacitors provide sufficient input decoupling. Use Schottky diodes with fast recovery for high frequencies, and rated for a 500mA peak inductor current. An internal soft-start limits I\textsubscript{IN} at startup and I\textsubscript{OUT} overshoot.

The ramped voltage added to the current sense amplifier reduces the maximum output current as the duty cycle increases. As more LEDs are added, the output voltage rises but the maximum current delivered to the load falls as well.

Setting the LED Current

The resistor R1 sets the LED current, where the current value is given by:

I\textsubscript{LED} = \frac{200mV}{R1}

Table 1 pairs resistor values with an LED current.

<table>
<thead>
<tr>
<th>I\textsubscript{LED} (mA)</th>
<th>R1 (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>3.33</td>
</tr>
<tr>
<td>180</td>
<td>1.11</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
</tbody>
</table>

PWM Dimming

PWM dimming requires the application of square waves to both the PWMA and the PWMB pins. A capacitor on the FSET pin sets the PWM dimming frequency according to the equation:

F\textsubscript{PWM}(Hz) = \frac{16176}{C\textsubscript{FSET}(nF)}

For C\textsubscript{FSET}=10nF, the F\textsubscript{PWM} is set to 1.6kHz.

The recommended F\textsubscript{PWM} range is 50Hz to 50kHz.

The minimum recommended amplitude of the PWM signal is 2V.

External capacitors on both PWMOA and PWMOB, together with internal 100kΩ resistors filter the square waveform to provide a DC value. The time constant should be ten times greater than a PWM waveform cycle:

RC > 10 \cdot T\textsubscript{PWM}
Selecting the Inductor

The inductor forces a higher output voltage driven from a lower input voltage. A larger inductor value results in less ripple current, a lower peak inductor current, and reduces stress on the internal N-Channel MOSFET. However, larger-value inductor has a larger physical footprint, higher series resistance, and lower saturation current.

Choose an inductor that does not saturate under the worst-case load conditions. Calculate the required inductance value using the following equations:

\[
L \geq \frac{\eta \times V_{\text{OUT}} \times D \times (1-D)^2}{2 \times f_{\text{SW}} \times I_{\text{LOAD}}}
\]

\[
D = 1 - \frac{V_{\text{IN}}}{V_{\text{OUT}}}
\]

Where \(V_{\text{IN}}\) and \(V_{\text{OUT}}\) are the input and output voltages, \(f_{\text{SW}}\) is the switching frequency, \(I_{\text{LOAD}}\) is the LED load current, and \(\eta\) is the efficiency.

Over-Voltage Protection

Open Load protection will shut off the MP3308 if the output voltage reaches over-voltage protection (OVP) threshold. LED failures will result in the feedback voltage falling to zero, which will cause the part to run at maximum duty cycle and boost the output voltage. If the output voltage exceeds the adjusted OVP threshold:

\[
V_{\text{OV}} = 0.9V(1 + \frac{R_2}{R_3})
\]

The MP3308 will shut down and will not remain off until the power cycles.

Layout Considerations

Layout requires special consideration to avoid electromagnetic interference from the high-frequency switching path. The high-frequency ripper current in the loop from the SW pin, through the output diode, and output capacitor to GND requires a connection loop that is as short as possible.

The IN pin must be locally bypassed, with a highly-recommended RC filter to eliminate noise. See Figure 3 for an example of this circuit.

![Figure 3—Input Bias Filtering](image)
TYPICAL APPLICATION CIRCUITS

Figure 4—Driving 27 WLEDs (9 WLEDs in Series and 3 Strings Paralleled) with 3V-3.3V Input Voltage¹

¹ Use additional bias circuit for low input voltage compatibility.
PACKAGE INFORMATION

QFN14 (3x4mm)

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH
3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX
4) JEDEC REFERENCE IS MO-229, VARIATION VGED-4.
5) DRAWING IS NOT TO SCALE

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.