DESCRIPTION
The MP26023 is a linear, high-performance single cell Li-Ion battery charger. By integrating high voltage input protection into the charger IC, the MP26023 can tolerate an input surge up to 28V.

The device features constant current (CC) and constant voltage (CV) charging modes with programmable charge currents (85mA to 1A), programmable battery full threshold, thermal protection, battery temperature monitoring, reverse current blocking and trickle charge. The device also provides AC adapter power good and charge status indications to the system.

MP26023 is available in 10-pin 3mm x 3mm QFN packages.

FEATURES
- Input Surge Up to 28V
- Adapter or USB Input
- Programmable Charge Current: 85mA to 1A
- Proprietary Constant Voltage Auto Recharge
- Proprietary Over-Voltage Protection
- 0.75% V_BATT Accuracy
- <1µA Battery Reverse Current
- 90µA Standby Current from V_IN
- Battery Temperature Monitoring
- Over Current Protection
- AC Adapter Power Good Indicator
- Charge Status Indicator
- Programmable Soft-Start
- Programmable Charge Termination Current Threshold
- Tiny 3mm x 3mm QFN Package

APPLICATIONS
- Cell Phones
- MP3 Players
- Smart Phones
- PDAs
- Digital Cameras

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

![Typical Application Diagram](image-url)

```
3.5V - 28V
CIN 1uF
430kΩ
430kΩ
IN
BATT
GND
IBF
IBSET
SS
NTC
MP26023
500kΩ
R1
100kΩ
RNTC

vBATT
v+ v-
CSS
0.1uF
COUT 1uF - 22uF
To system

RCHG 2.3kΩ
RCHG 20kΩ
RREF

OFF
ON

MP26023 Rev.0.9 www.MonolithicPower.com
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.
© 2009 MPS. All Rights Reserved.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number*</th>
<th>Package</th>
<th>Top Marking</th>
<th>Free Air Temperature (T_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP26023DQ</td>
<td>QFN10 (3mm x 3mm)</td>
<td>2UYW</td>
<td>–40°C to +85°C</td>
</tr>
</tbody>
</table>

* For Tape & Reel, add suffix –Z (e.g. MP26023DQ–Z).
For RoHS compliant packaging, add suffix –LF (e.g. MP26023DQ–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)
IN to GND ........................................–0.3V to +28V
All Other Pins to GND ..................–0.3V to +6.5V
Continuous Power Dissipation (T_A = +25°C) (2) ..............................................2.5W
Junction Temperature ....................140°C
Lead Temperature ..........................260°C
Storage Temperature ....................–65°C to +150°C

Recommended Operating Conditions (3)
Nominal Supply Voltage V_IN ............3.5V to 5.5V
Operating Junct. Temp (T_J) ..........–40°C to +125°C

Thermal Resistance (4) θ_JA θ_JC
QFN10 (3mm x 3mm) ..................50 ......12°C/W

Notes:
1) Exceeding these ratings may damage the device.
2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_JA, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_JA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
3) The device is not guaranteed to function outside of its operating conditions.
4) Measured on JESD51-7, 4-layer PCB.
## ELECTRICAL CHARACTERISTICS

$V_{IN} = 5V$, $V_{EN} = 0V$, $T_A = +25^\circ C$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>$I_{SUPPLY}$</td>
<td>$EN = High$</td>
<td>40</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$EN = Low, I_{CHG} = 0A$</td>
<td></td>
<td>500</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Battery Voltage Regulation</td>
<td>$V_{BATT}$</td>
<td>$T_A = -5^\circ C$ to $+75^\circ C$, $I_{BATT} = 0$</td>
<td>4.158</td>
<td>4.20</td>
<td>4.242</td>
<td>V</td>
</tr>
<tr>
<td>Battery Over-Voltage Protection</td>
<td>$I_{BATT_OVP}$</td>
<td>$V_{BATT} = 4.25V$</td>
<td>0</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Constant Current Regulation</td>
<td>$I_{CHG}$</td>
<td>$V_{IN} = 5V$, $V_{BATT} = 3.8V$, $R_{CHG} = 3.3k\Omega$</td>
<td>450</td>
<td>515</td>
<td>580</td>
<td>mA</td>
</tr>
<tr>
<td>Constant Current Variation</td>
<td></td>
<td>$V_{IN} = 5V$, $V_{BATT} = 3.8V$, $T_J = 0^\circ C$ to $+120^\circ C$, $R_{CHG} = 1.6$ kΩ to $8.0$ kΩ</td>
<td>87</td>
<td>100</td>
<td>113</td>
<td>%$I_{CHG}$ $(^5)$</td>
</tr>
<tr>
<td>Trickle Current</td>
<td></td>
<td>$V_{IN} = 5V$, $V_{BATT} = 2.3V$</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>%$I_{CHG}$ $(^5)$</td>
</tr>
<tr>
<td>Trickle Threshold Voltage</td>
<td></td>
<td></td>
<td>2.85</td>
<td>3.0</td>
<td>3.15</td>
<td>V</td>
</tr>
<tr>
<td>Trickle Voltage Hysteresis</td>
<td></td>
<td></td>
<td>230</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Battery Full Programming Range</td>
<td>$I_{BF}$</td>
<td>Refer to Operation section for programming $I_{BF}$</td>
<td>10</td>
<td>50</td>
<td></td>
<td>%$I_{CHG}$ $(^5)$</td>
</tr>
<tr>
<td>IBF Accuracy</td>
<td></td>
<td></td>
<td>75</td>
<td>125</td>
<td></td>
<td>%$I_{BF}$ $(^6)$</td>
</tr>
<tr>
<td>SS Pin Voltage</td>
<td>$C_{SS} = 0.1\mu F$, $V_{BATT} = 3.6V$</td>
<td>1.19</td>
<td>1.23</td>
<td>1.27</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input ACOK Up Range</td>
<td></td>
<td></td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>V</td>
</tr>
<tr>
<td>Input ACOK Low Range</td>
<td></td>
<td></td>
<td>1.8</td>
<td>2.5</td>
<td>3.2</td>
<td>V</td>
</tr>
<tr>
<td>Input Over Voltage Protection</td>
<td>$OVP$</td>
<td>$V_{IN}$ Rising</td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>V</td>
</tr>
<tr>
<td>OVP Hysteresis</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>$EN$ Trip Threshold High</td>
<td></td>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$EN$ Trip Threshold Low</td>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>CHG, ACOK Sink Current</td>
<td>$Pin$ Voltage = 0.4V</td>
<td>8</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Battery Reverse Current to BATT Pin</td>
<td>$EN = Low$ and Input = Floating or 0V</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Switch-On Resistance</td>
<td>$R_{ON}$</td>
<td>$V_{BATT} = 3.8V$, $I_{BATT} = 300mA$, $R_{CHG} = 1.7k\Omega$</td>
<td>0.35</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Soft Thermal Shutdown Threshold</td>
<td></td>
<td></td>
<td>105</td>
<td>120</td>
<td>135</td>
<td>°C</td>
</tr>
<tr>
<td>Soft Thermal Shutdown Hysteresis</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Soft-Start Time</td>
<td></td>
<td></td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>ms</td>
</tr>
</tbody>
</table>

Notes:

5) $I_{CHG}$ is the target preprogrammed charge current (Die temperature below 110°C).
6) $I_{BF}$ is the target preprogrammed battery full current threshold.
## PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN</td>
<td>Input Supply Pin. IN receives the AC adapter or USB supply voltage.</td>
</tr>
<tr>
<td>2</td>
<td>CHG</td>
<td>Open-Drain Charge Status Indicator. This pin is low during charging.</td>
</tr>
<tr>
<td>3</td>
<td>ACOK</td>
<td>Open-Drain Input ACOK Indicator. This pin is low if the voltage at the IN pin is between 2.5V and 6V.</td>
</tr>
<tr>
<td>4</td>
<td>EN</td>
<td>Charger IC Enable. An input “Low” signal at this pin or if the pin is floating will enable the IC.</td>
</tr>
<tr>
<td>5</td>
<td>NTC</td>
<td>Negative Thermal Coefficient (NTC) Thermistor Pin. Connect a 500kΩ resistor from this pin to the IN pin and a 100kΩ NTC resistor (within the battery pack) from this pin to ground. If NTC function is not used, replace NTC resistor with a regular 100kΩ resistor from this pin to ground. <strong>Do not leave this pin floating.</strong></td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>Soft-Start Timer. Connect this pin to an external capacitor to program the soft-start startup time using the equation: $T_{SS} = \frac{C_{SS}}{0.1\mu F} \times 20\text{msec}$.</td>
</tr>
<tr>
<td>8</td>
<td>IBF</td>
<td>Charge Status Threshold Program. Connect this pin to an external resistor to program the charge termination current or battery full charge current.</td>
</tr>
<tr>
<td>9</td>
<td>ISET</td>
<td>Constant Charge Current Program. Connect this pin to an external resistor to program the charging current in CC Mode.</td>
</tr>
<tr>
<td>10</td>
<td>BATT</td>
<td>Charger Output.</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

$V_{IN} = 5V$, $C_{IN} = 10\mu F$, $C_{OUT} = 4.7\mu F$, $T_A = +25^\circ C$, unless otherwise noted.

- **Battery Charge Curve**
  - $R_{CHG} = 2.26k\Omega$
- **Charge Current vs Battery Voltage**
  - $R_{CHG} = 1.69k\Omega$
  - $R_{CHG} = 2.87k\Omega$
  - $R_{CHG} = 8.66k\Omega$

- **Battery Voltage vs Input Voltage**
  - $I_{CHG} = 0.43A$

- **Charge Currents vs Battery Voltage**
  - $R_{CHG} = 1.69k\Omega$
  - $R_{CHG} = 2.87k\Omega$
  - $R_{CHG} = 8.66k\Omega$

- **Startup with EN**
  - $R_{CHG} = 1.96k\Omega$

- **Shutdown with EN**
  - $R_{CHG} = 1.96k\Omega$
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

\( V_{\text{IN}} = 5\text{V}, C_{\text{IN}} = 10\mu\text{F}, C_{\text{OUT}} = 4.7\mu\text{F}, T_A = +25^\circ\text{C}, \) unless otherwise noted.

### Charge Current vs. Input Voltage

\[ R_{\text{CHG}} = 2.87\text{k}\Omega \]

<table>
<thead>
<tr>
<th>Input Voltage (V)</th>
<th>Charge Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>500</td>
</tr>
<tr>
<td>4.4</td>
<td>540</td>
</tr>
<tr>
<td>4.5</td>
<td>580</td>
</tr>
<tr>
<td>4.6</td>
<td>620</td>
</tr>
<tr>
<td>4.7</td>
<td>660</td>
</tr>
<tr>
<td>4.8</td>
<td>700</td>
</tr>
<tr>
<td>4.9</td>
<td>740</td>
</tr>
<tr>
<td>5.0</td>
<td>780</td>
</tr>
</tbody>
</table>

### Charge Current vs. \( R_{\text{CHG}} \) Resistance

\[ V_{\text{BAT}} = 3.7\text{V}, 3.8\text{V} \]

### R\(_{\text{NTC}}\) vs. Input Voltage

\( T_{\text{LOW}} \)

### Reverse Current vs. Battery Voltage

\[ V_{\text{IN}} = 0\text{V} \]

### Charge Current vs. Temperature

\[ V_{\text{BAT}} = 3.8\text{V}, R_{\text{CHG}} = 2.87\text{k}\Omega \]

### Battery Voltage vs. Temperature
## OPERATION

### Input Voltage Range
The MP26023 has built-in input voltage surge protection as high as +28V. The charger IC will be automatically disabled when the input voltage is lower than 2.5V or higher than 6.0V. The open-drain pin \( \text{ACOK} \) is used to indicate an input power good condition (i.e. \( 2.5V < V_{\text{IN}} < 6.0V \)). If the input voltage is lower than the battery voltage, the IC is also disabled to prevent the battery from draining.

### Charge Cycle (Mode Change: Trickle -> CC-> CV)
Figure 2 below shows the typical charging profile for the MP26023. Figure 3 shows the typical charging procedure. For a fully depleted battery with a terminal voltage lower than 3.0V, the MP26023 will start with the trickle charge (preconditioning) at 10% of the programmed full charge current. After the battery voltage reaches 3.0V, the charger begins charging at the constant current of the programmed value \( I_{\text{CHG}} \). This is referred to as Constant Current (CC) mode. Once the battery voltage reaches 4.2V, the charger will operate in the constant voltage (CV) mode until the battery is fully charged. The charge current drops during CV mode, and the battery full indication is set when the charge current in the CV mode is reduced to the programmed full battery current \( I_{\text{BF}} \).
Table 1—$R_{\text{CHG}}$ and $I_{\text{CHG}}$ Relationship

<table>
<thead>
<tr>
<th>$R_{\text{CHG}}$ (kΩ)</th>
<th>$I_{\text{CHG}}$ (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1000</td>
</tr>
<tr>
<td>1.82</td>
<td>900</td>
</tr>
<tr>
<td>2.05</td>
<td>800</td>
</tr>
<tr>
<td>2.32</td>
<td>700</td>
</tr>
<tr>
<td>2.74</td>
<td>600</td>
</tr>
<tr>
<td>3.3</td>
<td>500</td>
</tr>
<tr>
<td>4.12</td>
<td>400</td>
</tr>
<tr>
<td>5.6</td>
<td>300</td>
</tr>
<tr>
<td>8.45</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

The recommended resistance for programming the charge current is $2.3kΩ < R_{\text{CHG}} < 11kΩ$. The battery full charge current threshold ($I_{\text{BF}}$) is programmed by connecting a resistor $R_{\text{BF}}$ from the IBF pin to GND:

$$I_{\text{BF}} = \frac{1A \times 1.7kΩ}{R_{\text{BF}}}$$

Where $2R_{\text{CHG}} < R_{\text{BF}} < 10R_{\text{CHG}}$. The open-drain pin CHG is used to indicate charging status. When the battery full condition is reached or any other condition prevents the charger from charging, CHG will become a floating pin.
Charge Status Indicator (CHG)
The MP26023 has an integrated charge status pin that remains low while the battery is charging. Once the charge current has reduced to the battery full charge current threshold ($I_{BF}$), the CHG pin will become high impedance.

Under full charge conditions, certain systems may draw a very narrow current pulse that exceeds the IBF threshold. The CHG indicator may glitch. It is desirable to blank the CHG glitch so that the system can properly indicate full charge conditions to the end user. A simple solution is to add a RC filter on the CHG pin to filter out the possible CHG glitch, as shown in Figure 5.

Negative Thermal Coefficient (NTC)
Thermistor
The MP26023 has a built-in NTC resistance window comparator. If configured as the typical application circuit as indicated in Figure 1, the MP26023 will cease charging if $R_{NTC} < 32.3\, \text{k}\Omega$ or $R_{NTC} > 376.6\, \text{k}\Omega$. This represents a valid charging temperature range of $0\, ^\circ\text{C}$ to $50\, ^\circ\text{C}$ for the TH11-4H104F NTC resistor.

Thermal Protection
The MP26023 has proprietary thermal protection to prevent the IC from overheating. When in thermal protection mode, the charge current becomes a saw-tooth waveform instead of a DC current. The average current of the saw-tooth waveform will be lower than the programmed DC charge current to prevent the IC from overheating. The frequency and amplitude of the saw-tooth current waveform can be altered by changing the capacitance value connected to the SS pin. Operating in thermal protection mode will slow down the charging process. Lowering the input voltage and enhancing thermal dissipation to the environment can effectively prevent the IC from going into thermal protection mode.

![Figure 5—Filtered Charge Status with GPIO Connection](image-url)
APPLICATION
Flow Chart of Operation

Power-On Reset (POR) feature can be applied to the MP26023 to ensure that the device starts operating in a known state. The flow chart in Figure 5 describes the conditions and operation modes of the MP26023. CVC and CCC stand for “constant voltage charge” and “constant current charge”, respectively.

Figure 6—Flow Chart of Operation
PACKAGE INFORMATION

QFN10 (3mm x 3mm)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

DETAIL A

NOTE:
1) ALL DIMENSIONS ARE IN MILLIMETERS.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
4) DRAWING CONFORMS TO JEDEC MO-229, VARIATION VEED-5.
5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.