DESCRIPTION

EVM3632S-PQ-00A evaluation board is based on MPS’S MPM3632S. The MPM3632S is a synchronous rectified, step-down Mini-Module regulator with built-in power MOSFETs, inductor and two capacitors. It offers a very compact solution with only input and output capacitors to achieve a 3A continuous output current with excellent load and line regulation over a wide input supply range. The MPM3632S operates in fixed 2.2MHz switching frequency with Constant-On-Time control which provides fast load transient response.

Full protection features include output over voltage protection, over-current protection and thermal shut down.

MPM3632S eliminates design and manufacturing risks while dramatically improving time to market.

The MPM3632S is available in a space-saving LGA10 (3mmx3mmx1.45mm) package..

ELECTRICAL SPECIFICATION (1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_{OUT}</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_{OUT}</td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes:
1) For different input/output voltage specs and different output capacitor/inductor may need change the application circuit parameters.

FEATURES

- Complete Switch Mode Power Supply
- Wide 4V-to-18V Operation Input Range
- 36mΩ/18mΩ Low $R_{DS(ON)}$ Internal Power MOSFETs
- 0.5% Accuracy Output Voltage
- 3A Continuous Output Current
- 2.2MHz Switching Frequency
- Forced CCM Mode
- Power Good Indicator
- 500μA Low Quiescent Current
- Hiccup OCP Protection
- Programmable Soft Start (Metal option)
- Output Over Voltage Protection
- Fast Transient Response
- Available in LGA3x3x1.45mm Package

APPLICATIONS

- Server Systems
- Medical and Imaging Equipment
- Distributed Power Systems

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and “The Future of Analog IC Technology” are Registered Trademarks of Monolithic Power Systems, Inc.
EVM3632S-PQ-00A BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty</th>
<th>RefDes</th>
<th>Value</th>
<th>Description</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Manufacturer_P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C1,C1A</td>
<td>10μF</td>
<td>Ceramic Cap, 25V, X5R</td>
<td>0805</td>
<td>muRata</td>
<td>GRM21BR61E106KA73L</td>
</tr>
<tr>
<td>2</td>
<td>C2,C2A</td>
<td>22μF</td>
<td>Ceramic Cap, 16V, X5R</td>
<td>0805</td>
<td>muRata</td>
<td>RM21BR61C226ME44L</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
<td>100pF</td>
<td>Ceramic Cap, 16V, X5R</td>
<td>0402</td>
<td>muRata</td>
<td>GRM1555C1E101JA01D</td>
</tr>
<tr>
<td>1</td>
<td>C1B</td>
<td>0.1μF</td>
<td>Ceramic Cap, 25V, X7R</td>
<td>0402</td>
<td>muRata</td>
<td>GRM188R71E104KA01D</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>1μF</td>
<td>Ceramic Cap, 16V, X6S</td>
<td>0402</td>
<td>muRata</td>
<td>GRM155C81C105KE11D</td>
</tr>
<tr>
<td>0</td>
<td>C2B</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>40.2kΩ</td>
<td>Film Res, 1%, 0402, 40K2</td>
<td>0402</td>
<td>Yageo</td>
<td>RC0402FR-0740K2L</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>13kΩ</td>
<td>Film Res, 1%, 0402, 13K</td>
<td>0402</td>
<td>Yageo</td>
<td>RC0402FR-0713KL</td>
</tr>
<tr>
<td>2</td>
<td>R3,R5</td>
<td>100kΩ</td>
<td>Thick Film Res., 1%</td>
<td>0402</td>
<td>Yageo</td>
<td>RC0402FR-07100KL</td>
</tr>
<tr>
<td>1</td>
<td>R4</td>
<td>1kΩ</td>
<td>Thick Film Res., 1%</td>
<td>0402</td>
<td>Yageo</td>
<td>RC0402FR-071KL</td>
</tr>
<tr>
<td>0</td>
<td>R6</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>MPM3632S</td>
<td>Synchronous Step-Down Convert</td>
<td>NS</td>
<td>MPS</td>
<td>MPM3632SGPQ</td>
</tr>
</tbody>
</table>
EVM3632S HIGH-FREQUENCY 18V/3A DC/DC REGULATOR WITH INTEGRATED INDUCTOR

EVB TEST RESULTS

$V_{\text{IN}} = 12V$, $V_{\text{OUT}} = 3.3V$, $T_A = +25^\circ C$, unless otherwise noted.

- **Efficiency vs. Load Current**
 - $V_{\text{OUT}} = 5V$
 - $V_{\text{OUT}} = 3.3V$

- **Load Regulation vs. Load Current**
 - $V_{\text{OUT}} = 3.3V$

- **Line Regulation vs. Input Voltage**
 - $V_{\text{IN}} = 12V$, $V_{\text{OUT}} = 3.3V$

- **Temperature Rise vs. Load Current**
 - $V_{\text{IN}} = 12V$
EVB TEST RESULTS (continued)

$V_{IN} = 12V$, $V_{OUT} = 3.3V$, $T_A = +25°C$, unless otherwise noted.

Vo Ripple

- **I$_{OUT}=0A$**
 - Channel 1: V_{OUT}/AC, 20mV/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 200ns/div.

- **I$_{OUT}=3A$**
 - Channel 1: V_{OUT}/AC, 20mV/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 200ns/div.

VIN Start-Up Through Input Voltage

- **I$_{OUT}=0A$**
 - Channel 1: V_{OUT}, 2V/div.
 - Channel 2: V_{IN}, 10V/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 5ms/div.

- **I$_{OUT}=3A$**
 - Channel 1: V_{OUT}, 2V/div.
 - Channel 2: V_{IN}, 10V/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 1ms/div.

Shutdown Through Input Voltage

- **I$_{OUT}=0A$**
 - Channel 1: V_{OUT}, 2V/div.
 - Channel 2: V_{IN}, 10V/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 50ms/div.

- **I$_{OUT}=3A$**
 - Channel 1: V_{OUT}, 2V/div.
 - Channel 2: V_{IN}, 10V/div.
 - Channel 3: V_{SW}, 10V/div.
 - Channel 4: I_{L}, 5A/div.
 - Time Scale: 50ms/div.
EVB TEST RESULTS (continued)

V\textsubscript{IN} = 12V, V\textsubscript{OUT} = 3.3V, T\textsubscript{A} = 25°C, unless otherwise noted.

Start-Up Through Enable

- **I\textsubscript{OUT} = 0A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{EN} 1V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.

- **I\textsubscript{OUT} = 3A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{EN} 1V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.

Shutdown Through Enable

- **I\textsubscript{OUT} = 0A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{IN} 10V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.

- **I\textsubscript{OUT} = 3A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{IN} 10V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.

Short Circuit Entry

- **I\textsubscript{OUT} = 0A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{EN} 10V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.

- **I\textsubscript{OUT} = 3A**
 - CH1: V\textsubscript{OUT} 2V/div.
 - CH2: V\textsubscript{EN} 10V/div.
 - CH3: V\textsubscript{SW} 10V/div.
 - CH4: I\textsubscript{L} 5A/div.
EVB TEST RESULTS *(continued)*

\(V_{\text{IN}} = 12\, \text{V}, \ V_{\text{OUT}} = 3.3\, \text{V}, \ T_{\text{A}} = +25^\circ\text{C}, \) unless otherwise noted.

Short Circuit Recovery

\(I_{\text{OUT}} = 0\, \text{A} \)

Short Circuit Recovery

\(I_{\text{OUT}} = 3\, \text{A} \)

Short Circuit Steady State

Transient Response

\(I_{\text{OUT}} = 1.5\, \text{A} - 3\, \text{A}, \ 800\, \text{mA}/\mu\text{s} \)

\(I_{\text{OUT}} = 1.5\, \text{A} - 3\, \text{A}, \ 800\, \text{mA}/\mu\text{s} \)
PRINTED CIRCUIT BOARD LAYOUT

Figure 1: Top Silk Layer

Figure 2: Top Layer

Figure 3: Bottom Layer

Figure 4: Inner1 Layer
Figure 5: Inner 2 Layer
QUICK START GUIDE

1. Preset Power Supply to 12V.
2. Turn Power Supply off.
3. Connect Power Supply terminals to:
 a. Positive (+): VIN
 b. Negative (–): GND
4. Connect Load to:
 a. Positive (+): VOUT
 b. Negative (–): GND
5. Turn Power Supply on after making connections. The board will automatically start up.
6. To use the Enable function, apply a digital input to the EN pin. Drive EN higher than 1.2V to turn on the regulator, or less than 1V to turn it off.