Display (Navigation, Heads-Up, Cluster)
Display (Navigation, Heads-Up, Cluster) Content
Description
Our exemplary portfolio of power management solutions includes step-down and step-up converters, power modules, low-dropout (LDO) regulators, linear regulators, USB charging ports, load switches, PMICs, backlight (WLED) drivers, brushed DC and solenoid drivers, and brushless DC pre-drivers. These automotive-grade parts enable high-quality displays, while also meeting important safety standards.
MPS’s efficient, scalable product portfolio provides everything you need to power the next generation of automotive display designs.
Block Diagram
Select parts to expand information in chart below
Components List
Resources
-
DESIGNING THE FEEDBACK VOLTAGE RESISTOR DIVIDER IN A DC/DC CONVERTERThe specifications of the feedback (FB) voltage resistor divider in DC-DC converters often poses various design challenges, such as determining the required resistance or adjusting parameters (e.g. output voltage, upper divider resistance or lower divider resistance). Figure 1 shows the various magnitude combinations for the FB upper and lower divider resistances. This article examines the ...
-
TRACTION INVERTER SYSTEMAn engine roaring is becoming a sound of the past, as the adoption of electric vehicles (EVs) continues to grow at an exponential rate. Soon the only sound will be the whirring an EV motor as the traction inverter delivers power from the battery. Traction inverters are instrumental in converting energy from the high-voltage battery (400V/800V) into three-phase AC energy to drive the vehicle’s moto...
-
ONBOARD CHARGING MODULE (OBCM)Electric vehicles (EVs) are becoming more present every day, with the adoption of EVs growing at an exponential rate. Onboard charging (OBC) is a very important part of EVs, since it determines the maximum possible charge rate while an AC charger is connected to the vehicle. The maximum charge capability for a fully electric vehicle is typically between 6.6kW and 22kW, and for a plug-in hybrid veh...
-
DEVELOPING A SMART COCKPIT SOLUTION WITH MPS AND SEMIDRIVEThere are a wide array of features in a smart car’s cockpit that can enhance driving experience. For example, full LCD central control screens and high-definition displays have made user experience smoother and simpler. With the addition of voice recognition, drivers can make calls and use intelligent navigation. High-quality sound and ambient lighting provide an immersive experience while listeni...
-
12V TO 48V BIDIRECTIONAL CONVERTER SYSTEM -
DC FAST CHARGING STATIONDC fast charging stations are becoming more common with the increased adoption of electric vehicles. Charging stations are a vital part of the infrastructure along major highways and populated suburbs, ensuring that electric vehicles have a place to charge during long-distance travel and day-to-day driving. These systems are often comprised of multiple 25kW to 75kW modules to create fast charging ...
-
DEVELOPING A MILLIMETER-WAVE RADAR POWER SUPPLYAutonomous driving is one of the most popular trends in the automotive industry. Currently, commercial-level automatic driving remains at the L2/L3 level. Automotive radar technology is gaining momentum as a solution to achieve higher levels of automated driving. With the accurate perception of millimeter-wave radar, cars can autonomously make intelligent judgements and decisions. At 77GHz, mil...
-
POWER SUPPLY DESIGN FOR CAR INFOTAINMENT SYSTEMS (PART I)A car’s infotainment system is an on-board, integrated information processing system based on the car’s bus body and internet. Vehicles have become more integrated and modular as consumers continue to raise expectations for driving, car information resources, entertainment, and safety. This trend has introduced new challenges to the research and development of car infotainment systems, particularl...
-
VERSAL AI EDGE (AUTOMOTIVE) FULL POWER MANAGEMENT REFERENCE DESIGN -
VERSAL AI EDGE (AUTOMOTIVE) –M, H DEVICES REFERENCE DESIGN -
VERSAL AI EDGE (AUTOMOTIVE) –L DEVICE REFERENCE DESIGN -
SPARTAN 7 AUTOMOTIVE SOLUTIONThis reference design is intended for powering AMD Xilinx Spartan7 family of FPGAs (S6 - S100). This PMIC based solution combines a small footprint with good efficiency and tight regulation for a low cost solution. The internal sequencer ensures power up and power down sequencing requirements MPQ7920 PMIC with 4x bucks, 5x LDOs Vin 2.7V to 5.5V I2C support QFN-26 (3.5mmx4.5mm) Cost effective and S...
-
OPTIMIZED BACKLIGHT DISPLAY DESIGN WITH THE MPQ3367A smart cockpit is essential for an intelligent, convenient, and safe automotive environment for drivers. Emerging energy companies and established car brands alike are increasing their investments to innovate cutting-edge smart cockpits. To meet this demand, MPS continues to introduce improved power management solutions in line with the future of automotive electronics. Many automotive features ...
-
FROM COLD CRANK TO LOAD DUMP: A PRIMER ON AUTOMOTIVE TRANSIENTSAdvances in automotive technology have dramatically increased the number of sophisticated electronic circuits required to improve driving experience and safety in a typical automotive system. New vehicles provide infotainment systems with high-resolution displays, an enhanced user interface, and numerous connectivity options. Improved safety features include LiDAR for collision avoidance, as well ...
-
WHEN IS IT BENEFICIAL TO PLACE A COPPER LAYER BENEATH DC/DC POWER SUPPLIES?Engineers often disagree on whether the inductive bottom of DC/DC power supplies should be laid with copper. The first argument is that laying copper under the inductor produces eddy currents on the ground plane. As a result, the eddy current affects the power inductor’s inductance and increases the system loss, and the ground plane noise impacts other high-speed signals. The second argument is th...
-
THE ROAD FROM ECUS TO DCUSAs electronic vehicles become more commonplace, electronic control units (ECUs) are becoming the standard, embedded control system for automotive electronics. ECU systems provide safety and functionality — applications using ECUs include anti-lock brakes, four-wheel drive, electronic automatic transmission, active suspension, and airbags. Gradually, the use of ECUs has extended to vehicle body saf...
-
MPS SOLUTIONS FOR INTELLIGENT DRIVINGThe four modern trends of the automotive industry are electrification, intelligence, networking, and sharing. Among these development trends, intelligence requires advanced on-board sensors, controllers, and actuators. Highly intelligent systems tend to have more sensors. As such, the number and variety of cameras/sensors installed on cars increase daily. These include the cameras installed on th...
-
MPQ3326: 16-CHANNEL, 50MA PER CHANNEL, AUTOMOTIVE-GRADE LED DRIVERThe MPQ3326-AEC1 WLED driver supports up to 16V input voltage, and applies 16 internal current sources in each LED string terminal. The LED current of each channel is set by an external current-setting resistor and the device is I2C configurable, as well as being integrated into a compact QFN-24 (4mmx4mm) package. Separate Pulse-Width Modulation (PWM) Dimming and Analog Dimming per Channel Dee...
-
MPS’S OPEN-SOURCE EMERGENCY VENTILATOR WITH EMOTIONTM AND BATTERY BACKUPAs COVID-19 spread in March of 2020, the global shortage of emergency ventilators was one of the biggest concerns. The increasing demand in ventilators meant they would soon be out of supply, so a team at Monolithic Power Systems (MPS) sought to help create a solution to this crisis. While MPS is not a medical device manufacturer, its engineers and designers are highly experienced with power elect...
-
EVALUATING THE TRANSIENT PERFORMANCE OF BUCK REGULATORS WITH AN INTEGRATED COMPENSATION NETWORKDesigning the compensation network for buck regulators can be tedious and may require several iterations to optimize the solution. Having an optimized control loop, which can enable fast transient response while maintaining proper stability, has become a major challenge with the emergence of new applications such as ADAS and fast transient response requirements. To address these issues, buck regul...
-
AUTOMOTIVE ELECTRONICS RELIABILITY TESTING STARTS AND ENDS WITH THE MISSION PROFILEAutomakers must design vehicles to thrive in a broad spectrum of environments, from snowy tundras to scorching deserts. Unlike most consumer applications, where the expected lifespan can be months, automotive electronics are often expected to last 15 years or more. When specifying a vehicle component, it is common for OEMs and their suppliers to develop an automotive mission profile, which is esse...
-
MPQ3367: AUTOMOTIVE-GRADE, 6-CHANNEL BOOST WLED DRIVER WITH WIDE DIMMING RATIOThe MPQ3367 is a 6-channel boost WLED driver with a wide 15000:1 dimming ratio. This automotive-grade driver is ideal for infotainment and cluster display systems, and features excellent EMI performance, an I2C interface, and robust protection features. Watch to learn how the MPQ3367 achieves high efficiency and great thermal performance to improve your automotive lighting design.
-
DOMAIN CONTROL MODULE - AUTOMOTIVE POWER STAGE FOR ADAS APPLICATIONSAdvanced driver assistance systems (ADAS) have experienced an astonishing evolution over the last few decades, and todays cars incorporate a large number of sensors and cameras that monitor every part of the vehicle, as well as its surroundings. As a consequence, the power requirements of these systems has increased, bringing new challenges to the power supply design. This reference design serves ...
-
SWITCH NODE LAYOUT CONSIDERATIONS FOR EMCThe switch node of a switching regulator or power converter circuit is a critical conduction path that requires special attention when designing the PCB layout. This circuit node is where one or more power semiconductor switches (such as a MOSFET or diode) connect to a magnetic energy-storing device (such as an inductor or transformer winding). The switching signals of this circuit node contain fa...
-
QUICK TIPS TO DIAGNOSE AND STABILIZE AN UNSTABLE SWITCHING POWER SUPPLYAn unstable power supply can cause severe system issues, such as audible noise from the passive components, unexpected jittering in the switching frequency, extreme oscillations on the output voltage during load transient events, and failures in the semiconductor switches. While there are various reasons for instability, an un-tuned compensation network accounts for majority of instability issues ...
Log in to your account
Create New Account