

# Replacing the Si9979 with the MP6532

**Application Note** 

Prepared by Pete Millett

**April 2017** 



### **ABSTRACT**

The MPS MP6532 is a three-phase pre-driver for brushless DC motors. The MP6532 is supplied in a 28-pin QFN or a 28-pin TSSOP package.

The device generates the required gate drive voltages to drive six, external, N-channel MOSFET transistors, arranged as a three half-bridge output. Hall sensor inputs are provided for the self-contained trapezoidal commutation of 3-phase motors.

The MP6532 is very similar functionally to the now end-of-life Vishay Siliconix Si9979 3-phase brushless DC motor controller. In most applications, the MP6532 can replace the Si9979 while providing added features, a smaller footprint, and a compelling price.

This application note explains the differences between and what should be considered when replacing the Si9979 with the MP6532.

# **Application Circuits**

The following are basic application schematics for the Si9979 (see Figure 1) and the MP6532 (see Figure 2). Note that in both cases there may be additional components required in some applications that are not shown in these diagrams. For example, resistors in series with the MOSFET gates may be needed to control the output slew rate.

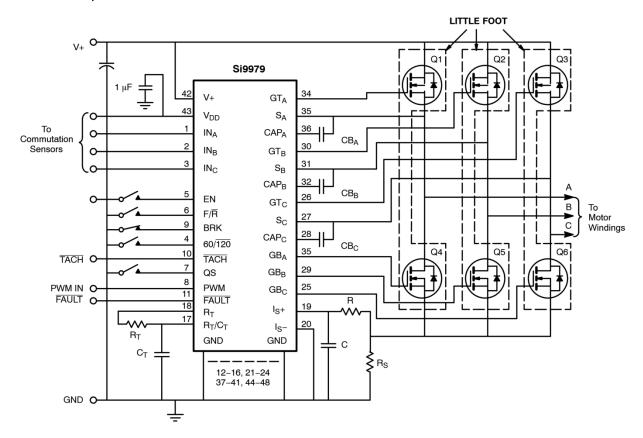



Figure 1: Si9979 Basic Application Circuit



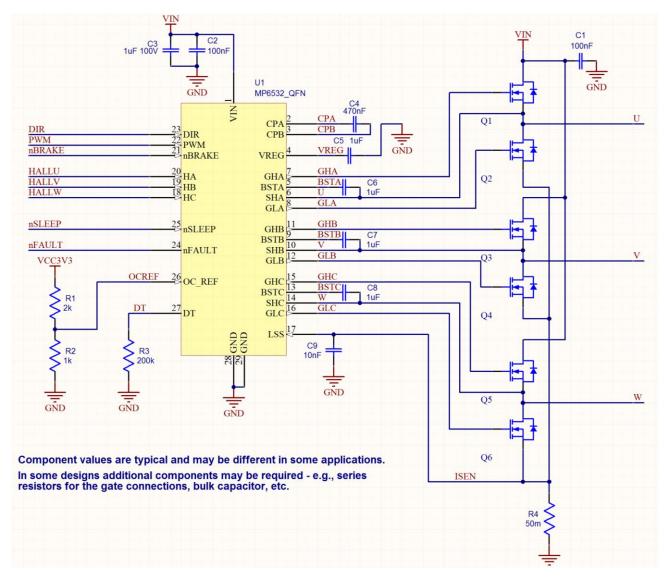



Figure 2: MP6532 Basic Application Circuit

These application circuits show that the parts are very similar and require nearly the same external connections and components.



Table 1 is a summary of the pin connections. Table 2 is a feature comparison of the two parts.

**Table 1: Pin Comparison** 

|                                     | Si9979            | MP6532                    |
|-------------------------------------|-------------------|---------------------------|
| PWM input pin                       | PWM               | PWM                       |
| Brake input pin                     | BRK (active high) | nBRAKE (active low)       |
| Motor direction input pin           | F/R               | DIR                       |
| Hall input pins                     | INA, INB, INC     | HA, HB, HC                |
| Low-side overcurrent sense          | IS+               | LSS                       |
| Low-side gate outputs               | GBA, GBB, GBC     | GLA, GLB, GLC             |
| High-side gate outputs              | GHA, GHB, GHC     | GHA, GHB, GHC             |
| Output connection (HS source)       | SA, SB, SC        | SHA, SHB, SHC             |
| Bootstrap capacitor pin             | CAPA, CAPB, CAPC  | BSTA, BSTB, BSTC          |
| V+ supply                           | V+                | VIN                       |
| Gate drive supply output            | VDD               | VREG                      |
| Enable input pin                    | EN                | nSLEEP                    |
| nFAULT output (active low)          | FAULT             | nFAULT                    |
| Hall sensor configuration pin       | 60/120            | Not available (120° only) |
| Sync/asynchronous configuration pin | QS                | Not available (sync only) |
| Overcurrent retry timing pins       | RT, RT/CT         | None (fixed retry)        |
| TACH output                         | TACH              | Not available             |
| Dead time programming pin           | Not available     | DT                        |
| VDS sense programming pin           | Not available     | OC_REF                    |
| Charge pump pins                    | Not available     | CP1, CP2                  |
| Power input                         | V+                | VIN                       |
| Ground                              | GND, IS-          | GND                       |

**Table 2: Feature Summary** 

|                                                   | Si9979                            | MP6532                                        |
|---------------------------------------------------|-----------------------------------|-----------------------------------------------|
| Package                                           | SQFP-48 (9mmx9mm)                 | QFN-28 (4mmx4mm) or<br>TSSOP-28 (9.7mmx4.7mm) |
| Hall inputs                                       | 60° or 120°, 5V only              | 120° only, 5V or 3V compatible                |
| V+ supply                                         | 20 - 40V                          | 5 - 60V                                       |
| Dead time                                         | Fixed 100/300nS                   | Adjustable w/ ext resistor 3 - nS - 6µS       |
| Gate drive voltage                                | Internal, 15 - 17V                | Internal, 10 - 12V (even if V+ = 5V)          |
| Under-voltage lockout                             | 12.2V typ.                        | 5.1V max                                      |
| Current limit comparator                          | 100mV threshold, adjustable retry | 500mV threshold, 70µS retry                   |
| Sync/async switching                              | Either, set with QS input         | Sync only                                     |
| TACH output                                       | Yes                               | No                                            |
| 100% duty cycle support                           | No (bootstrap only)               | Yes (bootstrap + charge pump)                 |
| VDS voltage sensing protection (de-sat detection) | No                                | Yes, with adjustable threshold                |
| Low-power sleep mode                              | No                                | Yes (<1mA)                                    |



### SPECIFIC NOTES AND RECOMMENDATIONS

### **FET Connections**

Connections to the external N-channel MOSFETs are identical between the two devices. Depending on the FET selection and desired slew rate, resistors may be required in series with the gates. In some cases, a diode may be placed in parallel to provide asymmetric turn-on and turn-off.

# **Dead Time**

The Si9979 has an internally fixed dead time of 100nS rising and 300nS falling.

The MP6532 has an adjustable dead time, which has the same rising and falling times. To set the MP6532 dead time to about 300nS, connect an  $82k\Omega$  resistor between DT and ground. The dead time can be changed as needed to accommodate different FETs and gate series resistances, if used.

# **Hall Inputs and Commutation**

The Si9979 has hall inputs that can be set to  $60^{\circ}$  or  $120^{\circ}$  spacing using the 60/120 programming input pin. The inputs must be 5V signals since the  $V_{IH}$  of these pins is 4V.

The MP6532 hall inputs are designed for 120° sensor spacing only and have a low enough  $V_{IH}$  threshold that either 5V or 3.3V hall sensors can be used.

# **Charge Pump and 100% Duty Cycle Operation**

The Si9979 generates the high-side gate drive voltage from the bootstrap circuit only. Because of this, the outputs must be driven low periodically to refresh the bootstrap capacitor, which holds the high-side gate drive voltages. In other words, the driver does not support true 100% duty cycle operation. Additionally, the input voltage must be above 20V for the part to operate.

The MP6532 works a bit differently. It has an internal charge pump (using an external capacitor) that generates a quasi-regulated 11V supply used for gate driving, so it can fully enhance the external MOSFETs even if the input supply falls as low as 5.5V. The MP6532 uses a bootstrap circuit to generate the high-side gate drive, but it also has an internal "trickle" charge pump that maintains the charge on the bootstrap capacitors, even when the outputs are held high. The MP6532 can support true 100% duty cycle operation.

### **Over-Current Protection**

Both the Si9979 and MP6532 have a comparator that can be used to monitor the voltage across a low-side sense resistor to detect over-current. The threshold voltage is different for each device: 100mV for the Si9979, and 500mV for the MP6532. The Si9979 will retry (re-enable the outputs) after a period of time that can be adjusted using external R and C components. The MP6532 has a fixed retry time of 70µs.

Additionally, the MP6532 senses the voltage between the source and drain of all external FETs when they are turned on. If this voltage exceeds the voltage applied to OC\_REF, a fault is recognized, and the device latches off. This feature is sometimes called de-saturation protection. If this feature is not needed, pull OC\_REF up to a voltage that ensures that the circuit will not be triggered falsely (e.g.: 3.3V).



### **Device Enable and Sleep Mode**

The Si9979 has an input pin called ENBL that disables the outputs of the device when set at inactive low.

The MP6532 has an input called nSLEEP, which also disables the device when driven low. Any unnecessary internal circuitry is also shut down to save power. The motor can be enabled and disabled by applying a signal to nSLEEP. When re-enabling the part by driving nSLEEP high, about 1ms of time is needed for the charge pump and internal circuits to stabilize before the outputs become active, so the nSLEEP input cannot be used like the PWM input to control motor speed. When nSLEEP is low, input signals to the Hall inputs, PWM, and DIR pins are ignored.

# **Synchronous and Asynchronous Operation**

The Si9979 has an input pin (QS) that allows users to select either synchronous or asynchronous PWM. In asynchronous mode (QS = 1), the PWM input signal turns the high-side MOSFET on and off only, and the low side MOSFET remains off. In synchronous mode (QS = 0), the low-side MOSFET is turned on when the high-side MOSFET is turned off. The MP6532 only supports synchronous mode.